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Introduction

Currently, as photonic and plasmonic structures and elements with sub-wavelength fea-
ture sizes are becoming very attractive components for integrated optics and photonics
devices in general, among other important experimental and technological aspects, new
theoretical exploitations and modelling activities are of high interest in connection towards
their direct application to realistic 3D geometries and problems to be solved and opti-
mised. Clearly, such demands require very efficient and reliable computational methods
based on various principles and theoretical considerations; these methods are often based
either on the time-domain approach (mostly represented with the finite-difference time-
domain – FDTD – method nowadays) or on the frequency-domain approaches, with both
advantages and disadvantages in these main categories. Among the frequency-domain
methods available nowadays, the “clever” physically oriented modal methods have proven
themselves as very efficient and reliable tools for modelling such (sub) wavelength-sized
photonics structures, including plasmonic devices, which are of general interest in current
scientific activities. Although these modal techniques have been originally developed as
mode expansion tools for guided-wave devices, and have gained a tremendous success
in standard integrated-optical modelling tasks, quite recently, they have been inspired
with the earlier-developed Rigorous coupled wave analysis (RCWA) method; also called
as Fourier modal methods (FMM); based on Fourier expansions [1].

This, in fact, has led to the improvement in numerical stability and algorithm perfor-
mance. Such methods have been named with the attribute aperiodic in connection to the
terminology of the periodic method, hence, the terms “aperiodic” Rigorous coupled wave
analysis (aRCWA), or perhaps more generally, aperiodic Fourier modal method (aFMM).
Within this text, as is also the tradition in our research, we will opt for the former term
aRCWA. To avoid confusion, by the term “3D aRCWA” we mean the aperiodic version
of 2D-periodic grating algorithm RCWA. Therefore, by the term “2D aRCWA” we mean
the aperiodic version of 1D-periodic grating algorithm RCWA.

Goals of the thesis

• Numerical implementation of the 2D-periodic RCWA, research and implementation of
related special features (various Fourier factorization schemes, ASR, NVM, symme-
tries, . . . ).

• Implementation of the 3D aRCWA method with relevant special features, based on
2D-periodic RCWA.

• Research and implementation of other (a)RCWA-like algorithms (1D full-anisotropic
RCWA, 2D magneto-optic aRCWA, . . . ), according to actual requirement.

• Thorough testing and optimization of developed methods.
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• Application of the methods to investigated photonic and plasmonic sub-wavelength
structures. Mainly, as represented in this thesis (localized surface plasmons based sen-
sors, one-way plasmonic waveguides, hybrid plasmonic waveguides, high-Q photonic
crystal nanocavities, and segmented sub-wavelength grating waveguides).

The secondary goals of this work include the development of other methods (e.g. nonlinear
2D aRCWA method, nonlinear Complex Jacobi method, . . . ) and application of (a)RCWA
methods to other areas of interest (e.g. metamaterials, surface plasmon resonance sensors,
sub-wavelength metallic apertures, . . . ). We note that the 2D aRCWA method has been
studied and implemented in the master’s thesis [2].

1 Numerical methods in photonics
Fabricating prototypes of optical components especially in the fields of photonics and plas-
monics is time consuming and very expensive. It is therefore no longer feasible to choose
the best design by fabricating a large set of possible alternatives and then evaluating
them experimentally. This means several cycles of fabrication, testing, characterization,
re-design, and finally, fabrication again. The only possible approach therefore is to resort
to computer models that simulate the optical behaviour of the different designs in an
accurate and speedy manner. Photonics is especially suitable for computation because we
can predict the optical properties of the proposed structure by simply solving Maxwell’s
equations on a computer. This is obviously faster and cheaper than fabrication. We can
simulate the structure first and redesign numerically until we get the ideal, optimised
structure before doing any fabrication.

From the physical point of view, numerical methods in photonics can be divided according
to type of solution to two major tasks groups:

1. Waveguide mode calculation, i.e. the computation of propagation constants in wave-
guides and mode shapes. Computer programs are often referred to as “mode solvers”.

2. Evolution of the optical field/mode in the structure. The aim is to calculate the
field distribution and evolution of optical radiation in longitudinally inhomogeneous
elements.

Some of the numerical methods can simultaneously be used as mode solvers and as
wave propagators: e.g. the finite-difference method, the finite element method, or eigen-
mode/modal expansion methods.

There exist a variety of optical models, there is no optimal numerical method which
can effectively solve all the investigated structures. Let us mention here only the most
important methods.

• Finite element method ([3])

• Finite-difference method ([4])

• Finite-difference time-domain method ([5])
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• Beam propagation method ([4])

• Method of lines ([6])

• Boundary element method ([7])

• Eigenmode expansion method ([8])

Classification of (aperiodic) rigorous coupled wave analysis

This work deals with the (aperiodic) rigorous coupled wave analysis, in a wider sense also
frequently called FMM (Fourier modal method). In contrast with eigenmode expansion
method, where the field expansion is determined for each homogeneous medium by find-
ing all the contributing modes and then matched at the boundaries, in the case of the
(a)RCWA method, the field expansion is obtain from the Fourier representation of the
permittivity/permeability profile. From this point of view, the (a)RCWA method can be
addressed as the eigenmode method by Fourier expansion.

Finally, high quality “black box” software is widely available, including free, open source
programs. Numerous software packages are available for problems and can easily be
found in the usual catalogues. Usually commercial codes are usually tailored to efficient
solutions of routine design problems and fail to accurately simulate high-end problems
found in cutting-edge research. Therefore, research in computational photonics is still
ongoing.

2 aRCWA algorithm
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Figure 1 Schematic picture of 2D
aRCWA principles: 1D artificial pe-
riodization.

This chapter is devoted to the theoretical deriva-
tion of the 3D aperiodic Rigorous coupled wave
analysis (aRCWA) method. This chapter con-
tains the description of all important extensions
of the 3D aRCWA method which we have em-
ployed.

Rigorous coupled wave analysis (also called the
Fourier modal method) [9] is an efficient tool for
the numerical analysis of periodical structures.
The RCWA method is based on the expansion
of the electromagnetic field and material proper-
ties (permittivity / permeability) into (Floquet)
- Fourier series. To solve the electromagnetic modes, given typically, by the wave vector of
the incident plane wave of the electric field, in periodic medium, the Maxwell’s equations
(in partial differential form) are expanded by the Floquet -Fourier functions and turned
into infinitely large algebra equations. Next, with the cutting off of higher order Fourier
functions, depending on the accuracy and convergence speed one needs, the infinitely
large algebraic equations become finite and thus solvable by computers.
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absorbing layer

absorbing layer

Figure 2 Schematic picture of 3D
aRCWA principles: 2D artificial pe-
riodization of the 3D structure cross
section.

To extend the use of the standard periodic RCWA
method, absorbing layers can be introduced such
that the model can mimic a non-periodic structure
[10, 1]. Proper absorbing layers numerically iso-
late the materials and propagating modes within a
unit period from its neighbouring periods and will
dampen all energy scattered from guided modes in
the unit period. For example, let us have a wave-
guide structure that extends to infinity in the ver-
tical dimension, as depicted in Fig. 1 (left). To
model it using the RCWA method, we have to
force the layer to a finite and repetitive computa-
tional domain by reducing the infinite space that
extends outside the waveguide structure, see Fig.
1 (right). In the last couple of years, we have
already demonstrated and effectively applied this
method in 2D aRCWA case [11].

The waveguiding problem of the multilayer struc-
ture (see Fig. 3) is solved in a sequence of steps.
First, the coupled-wave equations are constructed
and solved for the electromagnetic fields in each
layer (see Fig. 4). Secondly, the electromagnetic boundary conditions (continuity of the
tangential electric- and magnetic-field components) are applied between the input region
and the first layer, then between the first and the second layer, and so forth, and finally
between the last grating and the output region. Third, the resulting array of bound-
ary condition equations is solved for the reflected and transmitted field amplitudes, and
diffraction efficiencies are determined. These steps are discussed in the sections below.

input region output region

Figure 3 Geometry of a 3D photonic waveguide structure.

The extension into real 3D structure calculations causes a very strong increase of the
number of Fourier terms. This increase is not only due to two independent transverse
dimensions in play, but also due to generally hybrid character of eigenmodes of 3D struc-
tures.
Clearly, the first step for the 3D aRCWA represents the development of an efficient 2D
periodic RCWA tool, as discussed further in section 2.3, optimally with all efficient up-
to-date techniques already included as shown Fig. 5, i.e. mainly the critical convergence
issues, via the application of proper Fourier factorization rules described in section 2.2.
As the next step, in order to proceed towards the 2D mode solver, following the same idea
as in 1D case, again, the isolating boundary conditions applied on the boundaries of a 2D
period have to be utilized (see Fig. 2) where the schematic artificial periodization in 2D
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input

region

output

region

Figure 4 Side view of the photonic waveguide structure. The struc-
ture is composed of n sub-regions, the thickness of layer (p) is given by
(zp−1 − zp). The layers (0) and (n + 1) describe the output and input
region, respectively. The modes u(p) and d(p) describe the upwards and
downwards propagating modes in layer (p), respectively.

is illustrated. The most effective absorbing boundary layers applicable in this case are the
Perfectly matched layer (PML) type boundaries described in section 2.4. Additionally, if
the typical dimensions of the structural sections or their permittivities are of huge mutual
difference, another technique, called the Adaptive spatial resolution (ASR) can be very
helpful; the ASR technique is discussed in section 2.5. Next, moving from 2D to 3D
case, the number of expansion terms in the Fourier modal methods rapidly increases; the
total number of expansion terms is namely twice the product of the particular expansion
numbers in each of the two transverse directions. To reduce this problem at least partially,
structural symmetries of the simulated objects can be fully utilized. As the final step, as
the propagation extension of the 2D mode solver, advanced schemes of numerically-stable
scattering matrices is included.

RCWA aRCWA

Fourier series
Fourier

factorization rules

Adaptive spatial

 resolution
Normal vector methodLi's factorization rules

Another expansion 

series

Complex polarization

 basis

Complex exponential 

expansion (aRCWA)

Absorbing layers

Complex nonlinear 

coordinate transformation

Uniaxial PML layers

Result

Calculation

Symmetry 

procedures

Automated

generation

Matrix

algorithms

Choice of

proper function

Automated

generation

Bloch mode

calculation

Proper field calculation

New method

Figure 5 Schematic diagram of our (a)RCWA method development; various modifica-
tions to several critical parts within the algorithm have appeared, showing either partial
or even strong improvement in terms of performance / time efficiency and capabilities.
Points indicated in blue colour are of direct concern within the scope of this thesis.



aRCWA algorithm 11

11

We assume a time dependence of all fields of the form exp(− iωt). An input mode with
wavelength λ illuminates the structure under normal incidence. For simplicity, we limit
our analysis to materials with diagonal ←→ε and ←→µ . Definitely, we will analyse here only
the eigenmode problem in the longitudinally uniform sections of the photonic structure
to be modelled. Each such section is considered as a multilayer structure with stepwise
transverse permittivity profile. Fig. 4 gives a side view of the photonic waveguide struc-
ture shown in 3. The structure is composed of n layers (after multilayer approximation),
each of which is non-varying in the z direction, with the thickness of a particular region
(p) given by zp−1 − zp. The incident mode is sent typically from the input region (n + 1)
and the transmitted mode propagates in the output (region (0)). The modes u(p) and
d(p) describe the upwards and downwards propagating modes in layer (p).

To start the analysis, let us write the Maxwell’s curl equations in covariant form:

ερστ ∂σEτ = ik0
√

gT µρσHσ, (1)

ερστ ∂σHτ = − ik0
√

gT ερσEσ, (2)

where ερστ is the Levi-Civita tensor. Here, we use the Einstein summation rule over
repeated indices and note that a separate equation is represented for each of the three
values of ρ. These equations are formulated in a covariant form to apply simple coordinate
transformations in two dimensions for the application for the adaptive spatial resolution
technique and the perfectly matched layer. Since we consider only the rectangular Carte-
sian coordinate system (σ = x, y, z) and a uniaxial medium in the following analysis, due
to simplicity reason, the covariant metric tensor gT is equal to one (despite this simpli-
fication, our software tool RCWA-2D supports a non-rectangular Cartesian coordinate).
Writing out the summations and separate equations explicitly yields the following set of
equations:

∂yHz − ∂zHy = − ik0ε11Ex, (3)

∂zHx − ∂xHz = − ik0ε22Ey, (4)

∂xHy − ∂yHx = − ik0ε33Ez, (5)

∂yEz − ∂zEy = ik0µ11Hx, (6)

∂zEx − ∂xEz = ik0µ22Hy, (7)

∂xEy − ∂yEx = ik0µ33Hz. (8)

In brief, the aRCWA method involves finding solutions of Eqs. (3)–(8) in each region (i)
and connecting these solutions by the boundary conditions at the region interfaces.

2.1 Expansion of electromagnetic field

Until now, we only formulate Maxwell’s equations in the frequency domain. To solve
Maxwell’s equations rigorously, the electromagnetic fields can be decomposed into a basis
set of local eigenmodes. Compared to the true modal method [12] which tries to find
the exact solution of the field inside the grating, the RCWA method uses the (Floquet-
)Fourier series expansion of the material profile to obtain the mode expansion of the field.
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The advantage of the Fourier series is that it is easy to implement, moreover, the RCWA
method is applicable to many types of periodic structure compared to true modal method.

As we have noted, the electromagnetic field may be expanded into (Floquet-)Fourier series
(the field in the doubly periodic medium is a pseudoperiodic function)

Eσ(x, y, z) =
∑

m,n

Eσ,mn(z) e i(αmx+βny), (9)

Hσ(x, y, z) =
∑

m,n

Hσ,mn(z) e i(αmx+βny), (10)

where σ = x, y, z, αm = 2πm/Λx and βn = 2πn/Λy, where Λx and Λy are periods in the
x direction and in the y direction respectively (see Fig. 2); m and n are integers. Next,
Eqs. (9)–(10) will be inserted into Maxwell’s equations (3)–(8), but due to numerical
truncation of the Fourier series, Maxwell’s equations must be correctly converted into
linear algebraic systems in the discrete Fourier space, as shown in the next section.

Let us now study truncation of the Fourier series. Let m and n are integers such that
−Nx ≤ m ≤ Nx and −Ny ≤ n ≤ Ny, where the integers Nx and Ny describe the
truncation order in the x direction and the y direction, respectively (in practice, they are
often equal, i.e. Nx = Ny). A total nxy = (2Nx + 1)(2Ny + 1) orders have to be included
in the analysis.

2.2 Factorization rules

When the (a)RCWA method is implemented in practice, it is clear that the Fourier ex-
pansions must be truncated. As a result, quantities, that in an infinite Fourier expansion
are equivalent, may not be so in practice. Since the birth of the RCWA method, there
had been an issue with a convergence for planar diffraction (1D period) in the case of TM
polarization. The TM polarization convergence was slow and poor while the convergence
for the TE polarization was rapid and fully comparable with other methods. Important
changes in the algorithm for the TM case were performed in articles [13, 14], they, indeed,
brought a dramatic improvement of the convergence in the case of TM polarization, but
they were made without any mathematical explanation. In fact, mathematical explana-
tion of the improved TM polarization convergence brought Lifeng Li in [15]. Later Li [16]
applied factorization rules to the 2D periodic structures, too.

Figure 6 Example of various possibilities of Fourier factoriza-
tion techniques: Li’s factorization: a) rectangular shape, b) non-
rectangular shape; Normal vector method: c) non-rectangular shape.
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Firstly, we will review Li’s factorization rules for 2D gratings. This formulation is suit-
able for gratings composed of rectangular shapes as shown in Fig. 6a), in case of non-
rectangular shapes (see Fig. 6b), as an illustrative example), this technique brings inac-
curacy due to zigzag discretization.

Later paper [17] introduce an idea of the Normal vector method (also called in another
literature as the Fast Fourier factorization). This technique is based on the decomposition
of the electric field displacement vector into a normal and tangential component at each
boundary point (see Fig. 6c)). Therefore, the Li’s factorization rules are fulfilled at any
point on the material interface, hence there is no need to use the zigzag discretization.
Let us study these techniques in a more detail.

2.2.1 Li’s factorization rules for 2D gratings

For the 1D case, paper [15] showed that the slow convergence was connected with the
erroneous use of Laurent’s rule to factor the Fourier coefficient of a product of functions
with complementary jumps (discontinuities). Additionally, paper [15] brought rules for
the so-called proper Fourier factorization of different types of products, the rules are as
follows:

• A product of type 1 (two piecewise-smooth, bounded, periodic functions that have no
concurrent jump discontinuities) can be Fourier factorized by Laurent’s rule.

• A product of type 2 (two piecewise-smooth, bounded, periodic functions that have
only pairwise complementary jump discontinuities) cannot be Fourier factorized by
Laurent’s rule, but in most cases it can be Fourier factorized by the inverse rule.

• A product of type 3 (two piecewise-smooth, bounded, periodic functions that have
concurrent but not complementary jump discontinuities) can be Fourier factorized by
neither Laurent’s rule nor the inverse rule.

Figure 7 A unit cell of the
grating with periods Λx and Λy.

The Fourier factorization based on paper [15] is valid
only for rectangular objects. In order to factorize
an arbitrary object using this technique, zigzag dis-
cretization of the object must be used. Mesh dis-
cretization has a great influence on the accuracy of
results especially in the case of metallic structures.

Further, as we need to carry out the Fourier analysis
of equations (3)–(8), we start with equations (3)–(5).
Fig. 7 shows a unit cell of a 2D grating with periods
Λx and Λy. The modal fields in this case are piece-
wise continuous, piecewise smooth, and pseudoperi-
odic functions of x and y. The electric and magnetic field components transverse to
the z-axis are in general singular at the edges of the grating profile, but they should
be absolutely square-integrable because the electromagnetic energy enclosed in any finite
volume must be finite.
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Initially, we begin with equation (5). This equation can be directly factorized by Laurent’s
rule in the x and y directions, since Ez is continuous function in the z direction, thus the
product ε33Ez is a product of type 1, we obtain

(ε33Ez)mn =
∑

jl

[[ε33]]mn,jl Ezjl, (11)

where the first integer subscript before and after the comma in both cases are associated
with the Fourier coefficients in the x-direction and the second subscript in the y-direction
respectively. An element [[ε]] is a matrix generated by the double Fourier coefficients of
ε(x, y) such that [[ε]]mn,jl = εm−j,n−l.

Next, the Fourier factorization of equation (3) is slightly more complicated. The product
ε11Ex is a product of type 1 across the vertical y boundaries and a product of type 2
across the horizontal x boundaries. The Fourier analysis can be performed along the two
directions separately, and along each direction the product is of only one type. Firstly,
we have to apply the inverse rule in the x direction

(ε11Ex)m =
∑

j

⌈

1
ε11

⌉

−1

Exj(y), (12)

where ⌈f⌉ is the matrix generated by the Fourier coefficients of function f(x, y) with
respect to variable x. Secondly, we have to apply the Laurent’s rule in the y direction.

(ε11Ex)mn =
∑

jl

⌊⌈ε11⌉⌋mn,jlExjl, (13)

where we have introduced the symbol ⌊⌈ε11⌉⌋mn,jl =
⌊

⌈1/ε11⌉−1
nl

⌋

mj
. A matrix ⌊f⌋ is

generated by the Fourier coefficients of function f(x, y) with respect to variable y.

The Fourier factorization of equation (4) is similar to previous case; however, we must
apply the inverse rule in the y direction and Laurent’s rule in the x direction, thus

(ε22Ey)mn =
∑

jl

⌈⌊ε22⌋⌉mn,jlEyjl, (14)

where ⌈⌊ε22⌋⌉mn,jl =
⌈

⌊1/ε22⌋−1
nl

⌉

mj
.

To sum up, we rewrite equations (11,13, and 14) into a more compact form. The relation
between the electric displacement field and the electric field in the Fourier domain is given
by





Dxmn

Dymn

Dzmn



 =





Qε,11 Qε,12 Qε,13

Qε,21 Qε,22 Qε,23

Qε,31 Qε,32 Qε,33









Exjl

Eyjl

Ezjl



 , (15)

where Qε is a matrix defined as (written without matrix indices)

Qε =





⌊⌈ε11⌉⌋ 0 0
0 ⌈⌊ε22⌋⌉ 0
0 0 [[ε33]]



 . (16)



aRCWA algorithm 15

15

We noticed that the matrix Qε without any factorization takes the form
Qε = diag ([[ε11]] , [[ε22]] , [[ε33]]). Clearly, the Li’s correct factorization for crossed surface-
relief gratings brings faster convergence than in the the case without any factorization.

Previous Fourier analysis can also be done for equations (6)–(8) representing the proper
factorization for the permeability tensor, resulting equations are similar to Maxwell’s
equations with permeabilities due to symmetries of Maxwell’s equations.

Next procedure is straightforward, we have to eliminate variables Ez and Hz, after that
we obtain the following equations (written in a compact matrix form)

k0

i
∂z

(

Ex

Ey

)

= F

(

Hx

Hy

)

;
k0

i
∂z

(

Hx

Hy

)

= G

(

Ex

Ey

)

, (17)

where matrices

F =

(

α [[ε33]]−1
β −α [[ε33]]−1

α + k2
0⌈⌊µ22⌋⌉

β [[ε33]]−1
β − k2

0⌊⌈µ11⌉⌋ −β [[ε33]]−1
α

)

, (18)

G =

(

−α [[µ33]]−1
β α [[µ33]]−1

α− k2
0⌈⌊ε22⌋⌉

−β [[µ33]]−1
β + k2

0⌊⌈ε11⌉⌋ β [[µ33]]−1
α

)

. (19)

In the above, matrices α and β are the short-hand notation for (α)mn,jl = αmδmjδnl and
(β)mn,jl = βnδmjδnl, [[ε]] is the generic element of the 4D matrix εmn,jl, as previously
noted. let us now study truncation of matrices. The size of matrices α, β, [[]], ⌊⌈⌉⌋, ⌈⌊⌋⌉
is nxy × nxy, so the size of matrices F and G is 2nxy × 2nxy. Note that a possible way to

invert a 4D matrix M
(4D)
mn,jl (m, j = 0, . . . , 2Nx; n, l = 0, . . . , 2Ny) is by constructing the

corresponding 2D matrix M
(2D)
u,v (u, v = 1, . . . , nxy) with u = m(2Ny + 1) + n + 1 and

v = j(2Ny + 1) + l + 1.

2.2.2 Normal vector method (NVM)

According to Fourier factorization rules, discussed in the previous section 2.2.1, the Fourier
coefficients of the displacement vector components can be factorized, if we decompose
displacement vector to the parallel and normal component to a material interface [18].

Parallel and normal components of the electric field are used to satisfy Li’s factorization
rules at a material interface, but clearly the normal vector (NV) field must be given in a
whole grating period (the NV must be continuous and smooth). However, the setting of
the NV field is not unique.

First, let us look at the idea of the NVM. For simplicity of the explanation, we assume
non-magnetic isotropic material. In case of isotropic material, the displacement vector D

can be easily separated to a normal and a tangent component to the structure profile

D = εE = εET + εEN . (20)

If we introduce a unit vector N , normal to the grating profile, the normal component of
the electric field vector can be defined as EN = N (N · E), the tangent component is
then defined as ET = E −EN .
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We know from the previous analysis in section 2.2.1 that the term εET is discontinuous
and the term εEN is continuous, so after transformation into the Fourier domain, the
term εET must be calculated using Laurent’s rule and the term εEN must be calculated
using inverse rule.

D = [[ε]] ET + [[1/ε]]−1
EN = [[ε]] [E −N (N · E)] + [[1/ε]]−1 [N (N ·E)] . (21)

Next, we introduce a square matrix denoted (NN ) whose elements are given by (NN )i,j =
NiNj , the previous equation leads to

D = [[ε]] E +

(

[[ε]]−
[[

1
ε

]]

−1
)

[[NN ]] E. (22)

Relation between the electric displacement vector D and the electric intensity vector E

can be written in a compact form D = QεE where matrix Qε is given by

Qε = [[ε]]−
(

[[ε]]−
[[

1
ε

]]

−1
)

[[NN ]] , (23)

finally, the matrix Qε takes the form

Qε =





[[ε]]−∆
[[

N2
x

]]

−∆ [[NxNy ]] −∆ [[NxNz ]]
−∆ [[NxNy ]] [[ε]]−∆

[[

N2
y

]]

−∆ [[NyNz ]]
−∆ [[NxNz ]] −∆ [[NyNz ]] [[ε]]−∆

[[

N2
z

]]



 , (24)

where ∆ = [[ε]]−
[[

1
ε

]]−1
. Since we assume only 2D periodicity, Nz = 0:

Qε =





[[ε]]−∆
[[

N2
x

]]

−∆ [[NxNy ]] 0
−∆ [[NxNy ]] [[ε]]−∆

[[

N2
y

]]

0
0 0 [[ε]]



 . (25)

After elimination of variables Ez and Hz, we obtain the same matrix (18) and new matrix
G, the matrix G is defined as

G =

( −αβ + µk2
0∆ [[NxNy ]] α2 − µk2

0 [[ε]] + µk2
0∆

[[

N2
y

]]

µk2
0 [[ε]]− µk2

0∆
[[

N2
x

]]

− β2 βα− µk2
0∆ [[NyNx]]

)

. (26)

The sizes of the submatrices are the same as in Eqs. (18) and (19). The solution is then
given by the eigenvalue equation (27).

2.3 Solution of the eigenvalue equation — aRCWA mode solver

Let us now derive the eigenvalue equation of the aRCWA method. We assume here that
we have matrices F (18) and G either (19) or (26) or (??). A combination of Eqs. (17)
finally gives the eigenvalue equation

(

FG− k2
0γ2
)

(

Ex

Ey

)

= 0. (27)

The solution of (27) is a set of eigenvalues γ and the corresponding eigenvectors (Ex, Ey)T

(electric part of the eigenvectors). Magnetic part of the eigenvectors is easily given by
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(Hx, Hy)T = G(Ex, Ey)T 1/(k0γ). The modal expansions of the total field in a structure
layer (p) can be written as

Eσ(r) =
∑

m,n,q

[uq exp(iγqz) + dq exp(− iγqz)] exp [i (αmx + βny)] Eσmnq, (28)

Hσ(r) =
∑

m,n,q

[uq exp(iγqz)− dq exp(− iγqz)] exp [i (αmx + βny)] Hσmnq, (29)

where σ = x, y, and uq and dq are the unknown amplitudes of the upward and downward
modal fields. Once the eigenmodes and their propagating constants are known in each
layer, we have to match the boundary conditions (see some textbook on Optics) at the
interfaces to compute uq and dq. For computation, we use a stable matrix algorithm, e.g.
S-matrix algorithm [19] or enhanced T-matrix algorithm [9] (standard T-matrix algorithm
is numerically unstable). The physical quantities, that characterize how the incident field
power are distributed, can be chosen according to actual needs (e.g. periodic/aperiodic
RCWA, . . . ). We mention here only the most important quantities used in our simulations:

• diffraction efficiencies,

• modal reflectivity, modal transmissivity,

• power detector.

2.4 Absorbing layers

To simulate general aperiodic photonic structures using the RCWA method, it is necessary
to insert the artificial absorbing layers between adjacent periods. Such absorbing layers
must completely separate the periods and the periods then become independent. Ab-
sorbing layers must minimize backward parasitic reflections of light into the investigated
structure, i.e. they do not create a reflection for any wavelength, angle, or polarization.
Concerning the proper boundary conditions for the aRCWA method, they are, in fact,
present in other methods (especially in FDTD and FEM methods), where “open” struc-
tures (structures in infinite space) are simulated, too. From the computational point of
view, it is necessary to properly enclose the investigated structure by absorbing layers.

A perfectly matched layer (PML) [20] is an artificial “absorbing” layer used to truncate
computational regions in numerical methods. The concept of PMLs, which is suitable for
the aRCWA method, can be introduced in a variety of ways, using either also a complex
refractive index distribution [21], a complex coordinate stretching [22], anisotropic uniaxial
media [23], or a nonlinear complex coordinate transformation [1]. Further, we will focus
on the nonlinear complex coordinate transformation and the anisotropic uniaxial media.
We have implemented and tested both PML techniques.

2.4.1 Nonlinear complex coordinate transformation

Nonlinear complex coordinate transformation [1] is used as an efficient boundary condition
of the PML type, it is designed to absorb the outgoing waves at the computational bound-
aries. Motivated with [1], paper [24] introduce another coordinate transformation. The
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figure 8 shows the coordinate transformation and its first derivative; the mathematical
definition of the coordinate transform can be found in [1, 24]. Now, the computational
space in the x-direction (similarly in the y-direction) is divided into three subintervals
(xmin,xb), (xb,xu), and (xu,xmax); the absorption of the outgoing waves occurs in the first
and the third interval due to the nonlinear and complex space, while the space in the sec-
ond interval is linear and non-complex (see Fig. 8); therefore, the space is non-absorbing
in this layer.
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Figure 8 A typical example of the nonlinear coordinate transformation: a) function
x = F (x′), b) function f(x′) for γP ML = 1/(1− i).

In order to express the matrix equations (17) in the new absorbing coordinate system
(x′, y′), it is necessary to know relations between partial derivatives if the old and new
coordinate system ∂/∂x and ∂/∂x′ and between ∂/∂y and ∂/∂y′ hence in the x-direction

∂

∂x
=

∂x′

∂x

∂

∂x′
=

(

∂F (x′)
∂x′

)

−1
∂

∂x′
= fx′

∂

∂x′
, (30)

and in the y-direction

∂

∂y
=

∂y′

∂y

∂

∂y′
=

(

∂F (y′)
∂y′

)

−1
∂

∂y′
= fy′

∂

∂y′
. (31)

So it means that the formulation of the eigenvalue problem in the new coordinate system
(x′, y′) is obtained by replacing matrices α and β in equations (17) by the matrices Fxα

and Fyβ, where matrices Fx and Fy are Toeplitz matrices which are composed of the
Fourier series elements of functions fx′ and fy′ , respectively.

For the sake of completeness, the function f(x′) is given by [24, 11]

f(x′)(x′

min
,x′

b
) =

[

1− γP ML sin2

(

π(x′ − x′

b)
2(x′

b − x′

min)

)]

cos2

(

π(x′ − x′

b)
2(x′

b − x′

min)

)

f(x′)(x′

b
,x′

u) = 1

f(x′)(x′

u,x′

max) =

[

1− γP ML sin2

(

π(x′ − x′

u)
2(x′

max − x′

u)

)]

cos2

(

π(x′ − x′

u)
2(x′

max − x′

u)

)

, (32)
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where γP ML = 1/(1 + i);1 the function f(y′) is given in the same way. For the numerical
implementation of the aRCWA method, the functions f(x′) and f(y′) must be expanded
in the 2D Fourier series. However, for some special purposes, γP ML ∈ R is also applicable,
e.g. when the aRCWA method is used as a eigenmode solver.

2.4.2 Uniaxial perfectly matched layers

It has also been discovered [23] that the reflection less properties of a material can be
achieved if the material is assumed to be diagonally anisotropic, hence they are called
as uniaxial perfectly matched layers. Artificial material properties of a such layer are
selected so that the interface between the absorbing layer and free space shows up no
reflections. Its permeability and permittivity tensors can be written as ε = ε0εrΨ and
µ = µ0µrΨ, where

Figure 9 Arrangement of ab-
sorbing layers in the 2D compu-
tation window.

Ψ =





a 0 0
0 b 0
0 0 c



 , (33)

where a, b, and c are constants. In order to damp
all transmitted radiation, the paper [23] shows that
the values a, b, and c are not independent. They are
interconnected with

a = b =
1
c
. (34)

Thus, the PML layer can be characterized by one com-
plex number α = α′ + iα′′. When α, β > 0, the
transmitted wave will be damped in the anisotropic
medium. For the computation, the PML absorbers
are best defined as is in Fig. 9. Absorbers type
1 and type 2 only consider the case of a wave incident on a single planar boundary.
However, an ambiguity occurs in the corner regions where there is more than one nor-
mal interface boundary. Within these regions, a more generalized constitutive rela-
tionship is necessary (see [23]). In brief [25], anisotropic parameters for type 2 ab-
sorbers are µ11 = µ33 = ε11 = ε33 = α and µ22 = ε22 = 1/α. For type 1 ab-
sorbers, µ22 = µ33 = ε22 = ε33 = α and µ11 = ε11 = 1/α. For type 3 absorbers,
µ11 = µ22 = ε11 = ε22 = 1 and µ33 = ε33 = α2. In our simulations, typical values of
constant α are chosen between 1(1 + i) and 5(1 + i).

We have implemented and successfully applied both these types of boundary condition,
as will be demonstrated in section 4. Via a detailed testing we have found practically
equal performance of these two types of boundaries.

2.5 Adaptive spatial resolution technique

The adaptive spatial resolution (ASR) technique [26] is widely used in the RCWA method
to reduce the Gibbs phenomenon (overshooting of the values) around the discontinuities of
the permittivity thereby to improve the convergence of the Fourier series, finally improving
the accuracy of the computation result.

our previous research has shown that γP ML = 1/(1 + i) is the most efficient value1
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Figure 10 Schematic graph of ASR transformations: a) the ASR transformation ac-
cording to [27], b) the ASR transformation according to [11], the main difference between
both transformation is within the PML region, in case of the ASR transformation accord-
ing to [11], the transformation is chosen to be linear.

For simplicity, let us consider only transformation of coordinate x′ (x with prime means
that original x is taken after the application of PML — coordinate transformation) in the
x′, y′, z space. The ASR technique is then a coordinate transformation which transforms
the coordinate x′ as a function of new coordinate u′; the transition points are denoted
by x′

l in the x′ space and by ul in the u space. In order to proceed from (l − 1) to l
transitions, we use the transformation function x′

l(u) for the mapping between different
spaces, typically of the form (see Fig. 10a)):

x′

l(u) = a1 + a2u +
a3

2π
sin

[

2π
u− ul−1

ul − ul−1

]

, (35)

where

a1 =
ulx

′

l−1 − ul−1x′

l

ul − ul−1
, a2 =

x′

l − x′

l−1

ul − ul−1
, a3 = G(ul−ul−1)− (x′

l−x′

l−1), (36)

where G is a stretching coefficient in the interval (0, 1〉. It’s choice can be used to tune
and optimize the ASR performance. According to (35), there is a possibility of having
different dimensions in the new (u, y′, z) space than in the (x′, y′, z) space. The choice of
coordinates in the transformed space has a direct consequence on the convergence of the
Fourier series, this choice will be discussed in the end part of this subsection.

In addition, there are many ways how to choose the ASR transformation function. Moti-
vated with [27], we have proposed another ASR transformation [11] (see Fig. 10b)). The
mathematical definition of our ASR function is given in [11]. Here we require that x′

l(u)
leaves the former PML transformation intact, furthermore, within the PML regions, our
ASR function is chosen to be linear with the slope of unity and to be smooth at both the
lower and upper boundaries of the PML regions.

Typical graphs of the functions ε(u) and a(u) = h(u)ε(u) (transformed permittivity) are
plotted in Fig. 11a). The function a(u) is given by the product of permittivity function
and the scaling function h which is defined as h = dx′/ du. It can be seen that the Fourier
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Figure 11 A typical example of the ASR function: a) Step-index profile of ε with the
Gibbs phenomenon at the edges is reduced using the ASR technique, b) spatial resolution
is increased around the discontinuities of the permittivity.

series of the function ε contains the Gibbs phenomenon at the edges, whereas the Gibbs
phenomenon is reduced in case of the function a. Because of the step-index profile of the
permittivity (chosen as an example in Fig. 11) is transformed into harmonic-type profile,
which is more suitable for the Fourier series, the speed of the convergence is faster than
in the case without the ASR technique. Figure 11b) illustrates the simultaneous increase
of the spatial resolution around the discontinuities of the permittivity.

In our case of 2D periodicity, identical coordinate transformation y′(v) is placed along
the y′ direction. Paper [28] shows practical implementation of 2D ASR transformation.
Based on the covariant form of Maxwell’s equations (1) and (2), the covariant metric
tensor

√
gT takes the following form:

√
gT =





g
h 0 0
0 h

g 0
0 0 gh



 , (37)

where g and h are defined as h = dx′/ du, g = dy′/ dv. As we have already shown in
previous section 2.4.2, this transformation of coordinates can be easily included in uniaxial
←→ǫ and ←→µ tensors

←→ε =





g
hε11 0 0

0 h
g ε22 0

0 0 ghε33



 , ←→µ =





g
hµ11 0 0

0 h
g µ22 0

0 0 ghµ33



 . (38)

Inspired with [28], we have successfully implemented the 2D ASR transformation [29–31].
There are questions about choosing the proper value of parameter G and the choice of
coordinates in the transformed space. Unfortunately no scheme exists so far to predict the
optimum choice of parameters G for the ASR transformation, according to our experience,
the parameter G should be close to zero (e.g. 0.01). Hence, it can be that another value
leads to better results, but it is not our intention to discuss this problem in closer details
now.
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3 Full-anisotropic aRCWA algorithm
In order to analyse magneto-optic waveguides within our research projects, we have de-
veloped an efficient 2D numerical technique based on magneto-optic aperiodic rigorous
coupled wave analysis (MOaRCWA). The artificial periodicity is imposed within a pe-
riodic 1D RCWA method, in the form of the complex transformation and / or uniaxial
perfectly matched layers. Our approach, in which several key improvements relevant for
the Fourier modal method approach have been implemented, is able to properly cope not
only with magneto-plasmons propagation effects in corresponding nanostructures, but
also with a fully general form of permittivity / permeability anisotropy. We will follow
the basic idea of the paper [32], where the derivation of (periodic) full-anisotropic RCWA
method is given. Our implementation for the aRCWA is original and will be subsequently
published.

Magneto-optic Fourier modal method (or MOaRCWA) simulations are demonstrated in
section 4.2 where we analyse nonreciprocal magnetoplasmonic waveguides formed with
InSb material, applicable as one-way structures in the THz frequency range.

3.1 Eigenvalue equation

The mathematical description of the method, we focus only on the Maxwell’s equation (1),
where there is a permittivity function ε. The factorization analysis of terms in Maxwell’s
equation (2) is similar to factorization analysis of (1), and will not be shown here, due to
simplicity. After expanding of Maxwell’s equation (1), we obtain the system of equations

∂2H3 − ∂3H2 = − ik0 (ε11E1 + ε12E2 + ε13E3) , (39)

∂3H1 − ∂1H3 = − ik0 (ε21E1 + ε22E2 + ε23E3) , (40)

∂1H2 − ∂2H1 = − ik0 (ε31E1 + ε32E2 + ε33E3) . (41)

Here, we switch to use 1, 2, 3 instead of x, y, z to denote the field components. Our
method is based on the 1D-periodic RCWA method [32], where the electromagnetic field
components and permittivity and permeability tensor elements are expanded into Floquet-
Fourier series. Due to numerical truncation of the Fourier series, Maxwell’s equations
must be correctly converted into linear algebraic systems in the discrete Fourier space.
According to [32], the system of equations (39)–(41) can be rewritten as

∂2H3 − ∂3H2 = − ik0 (Qε,11E1 + Qε,12E2 + Qε,13E3) ,

∂3H1 − ∂1H3 = − ik0 (Qε,21E1 + Qε,22E2 + Qε,23E3) ,

∂1H2 − ∂2H1 = − ik0 (Qε,31E1 + Qε,32E2 + Qε,33E3) .

where the matrix Qε,ik (dimension 3 × 3) is defined as (after applying both the ASR
technique h and the anisotropic PML to both ←→ε and ←→µ )
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Qε =













[[

h
ε′

11

]]

−1 [[

h
ε′

11

]]

−1 [[
hε′

12

ε′

11

]]

[[

hε′

21

ε′

11

]] [[

h
ε′

11

]]

−1 [[

hε′

21

ε′

11

]] [[

h
ε′

11

]]

−1 [[
hε′

12

ε′

11

]]

+
[[

h
(

ε′

22 −
ε′

21
ε′

12

ε′

11

)]]

[[

hε′

31

ε′

11

]] [[

h
ε′

11

]]

−1 [[

hε′

31

ε′

11

]] [[

h
ε′

11

]]

−1 [[
hε′

12

ε′

11

]]

+
[[

h
(

ε′

32 −
ε′

31
ε′

12

ε′

11

)]]

[[

h
ε′

11

]]

−1 [[
hε′

13

ε′

11

]]

[[

hε′

21

ε′

11

]] [[

h
ε′

11

]]

−1 [[
hε′

13

ε′

11

]]

+
[[

h
(

ε′

23 −
ε′

21
ε′

13

ε′

11

)]]

[[

hε′

31

ε′

11

]] [[

h
ε′

11

]]

−1 [[
hε′

13

ε′

11

]]

+
[[

h
(

ε′

33 −
ε′

31
ε′

13

ε′

11

)]]













.

Resulting matrix Rµ (dimension 3 × 3) for permeability tensor ←→µ is similar to the ma-
trix Qε. After eliminating electromagnetic field components E2 and H2 , we get the
eigenvalue equation: A(E3, H3, H1, E1)T = λ(E3, H3, H1, E1)T (λ denotes eigenvalues),
where matrix A (dimension 4× 4) is given by

A =











−Rµ,12R−1

µ,22
α −k0Rµ,12R−1

µ,22
Rµ,23 + k0Rµ,13

k0Q
12

Q−1

ε,22
Q

23
− k0Qε,13

−Qε,12
Q−1

22
α

−k0Qε,32
Q−1

ε,22
Qε,23

+ k0Qε,33
− 1

k0

αR−1

µ,22
α Qε,32

Q−1

ε,22
α−αR−1

µ,22
Rµ,23

Rµ,32R−1

µ,3222
α−αQ−1

ε,22
Qε,23

k0Rµ,32R−1

µ,22
Rµ,23 − k0Rµ,33 + 1

k0

αQ−1

ε,22
α

k0Rµ,11 − k0Rµ,12R−1

µ,22
Rµ,21 0

0 −k0Qε,11
+ k0Qε,12

Q−1

ε,22
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µ,22
Rµ,21 −αQ−1

ε,22
Qε,21











, (42)

where α is the diagonal matrix with elements αn = n2π/Λx, k0 = 2π/λ0 and λ0 is the
vacuum wavelength, and Λx is the artificial period of the system. Integer n is taken from
the interval [−N, N ], where the integer N describes the truncation order; hence the size
of all submatrices is (2N + 1) square and the size of the matrix A is 4(2N + 1) square.

After obtaining eigenvalues and eigenvectors in each layer, boundary conditions are
matched on each boundary (e.g. with the S-matrix algorithm).

Here, we have derived (implemented) a general form of the eigenvalue equation which
allows dealing with fully anisotropic medium described by a general form of permittivity
and/or permeability tensor.

3.2 Eigenvalue equation: case of transversal configuration

Now we are going to simplify the general eigenvalue equation (42), derived above. The
eigenvalue equation (42) is derived for general tensors ←→ε and ←→µ . In the presence of
the external magnetic field, there are three possible magneto-optic (MO) configurations,
transversal (or Voigt), longitudinal (Faraday), and polar configuration.

Next, we focus on transversal (Voigt) magneto-optic configuration (see Fig. 12a)), the
tensor ←→ε takes the form of
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Figure 12 Schematic drawing of three possible MO waveguide configura-
tions: a) transversal (Voigt), b) longitudinal (Faraday), c) polar configuration.

←→ε =





ε11 ε12 0
−ε12 ε22 0

0 0 ε33



 .

In that case, the general eigenvalue equation (42) can be simplified according to TM/TE
polarization [33]. In case of TM polarization, reduced eigenvalue equation leads to

( −Qε,12Q−1
ε,22α −k0Qε,11 + k0Qε,12Q−1

ε,22Qε,21

−k0Rµ,33 + 1
k0

αQ−1
ε,22α −αQ−1

ε,22Qε,21

)(

H3

E1

)

= λ

(

H3

E1

)

,

and the TE eigenvalue equation is given by
(

0 k0Rµ,11

k0Qε,33 − 1
k0

αR−1
µ,22α 0

)(

E3

H1

)

= λ

(

E3

H1

)

.

The eigenvalue equation for TE polarization may be further simplified, but we will mainly
focus on TM polarization case. In this case, the eigenvalue problem of a matrix size
4(2N + 1) square (for N diffraction orders) is reduced to the eigenvalue problem of a
matrix size 2(2N + 1) square, i.e. twice. The corresponding calculation time and memory
consumption is about one-eighth compared with the full-anisotropic RCWA.

4 Numerical analysis of selected advanced
problems

This chapter is devoted to the demonstration of the applicability of the (a)RCWA method
to the analysis of various photonic / plasmonic nanostructures as we studied in the pre-
vious years. For the purpose of this text, only several examples were chosen, the number
of examples has been much larger. Here, we start with the application of the 2D-periodic
RCWA method to the localized surface plasmons based sensors. Then we analyse non-
reciprocal magnetoplasmonic waveguides using the magneto-optic aRCWA method (see
Ch. 3). Finally, we demonstrate the aRCWA method as a fully 3D effective tool for
treating photonic / plasmonic nanostructures particularly, in this case PhC nanocavities
with large Q.

These examples presented further, in fact, comprise an representative selection of a much
larger portfolio of simulations, we have successfully performed in previous years, using
our (a)RCWA tools. Specifically, I was deeply involved in the Czech Science Foundation
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project Physics and advanced simulations of photonic and plasmonic structures (2010–
2013) where both the main tools presented in this thesis as well as applications were
achieved. Concerning the simulations for the applications, we performed extensive stud-
ies and simulations in such areas as: photonic magnetooptic structures with nonrecip-
rocal properties (such as InSb MO guides presented in section 4.2), advanced plasmonic
nanostructures for guided-wave applications (such as hybrid plasmonic waveguides), novel
3D resonant nanostructures (such as photonic crystal nanocavities with high figures of
merit), plasmon-based sub-wavelength structures and negative-index metamaterials (sim-
ulations of various types of plasmonic metamaterials, such as fishnets, using (a)RCWA,
not presented in this text), and investigation of light interaction in photonic crystals (sim-
ulations of various types of advanced photonic crystals, including metallo-dielectric ones,
performed with adapted (a)RCWA — not presented in this text).

4.1 Sensors based on localized surface plasmon (LSP)

This section is devoted to our recent modelling activities in optical (bio) sensors based on
surface plasmon resonance for the detection of chemical and biochemical species mainly,
within the Czech Science Foundation (GACR) project P205/12/G118. Surface plasmons
(SPs) are coherent oscillations of free electrons at the boundaries between metal and dielec-
tric which are often categorized into two classes: propagating surface plasmons (PSPs) and
localized surface plasmons (LSPs). While PSPs are propagating electromagnetic waves at
an interface, in case of LSP, there is no propagating wave at surface, but instead enhanced
surface field near the particle’s surface; this enhancement falls off quickly with distance
from the surface. Plasmon resonant frequencies of PSPs and LSPs are highly sensitive to
slight refractive index changes (caused by a change of the concentration of a measured
medium, as e.g. bacteria, chemical compounds, . . . ) in the adjacency of noble metal
nanoparticles, making PSPs LSPs attractive for the development of plasmonic biosensors
[34]. Compared to SPPs and/or LSPs exhibit considerably lower refractive index sensitiv-
ity corresponding to bulk refractive index changes; however, the resolution corresponding
to surface refractive index changes is comparable [35] due to higher localization of the
electromagnetic field at the interface between dielectric and metal. Potential benefits of
LSP sensor platform are high localization, enhanced efficiency and faster response.

Next section demonstrates the use of the 2D-periodic RCWA method as an efficient tool
to simulate LSP-based-sensors.

4.1.1 LSP-based-sensors on an array of random nanodisks

This section summarizes the main results of our recent paper [36]. In this work, we
studied the optical response of Fano resonance resulting from the interference between
localized surface plasmons on a random array of gold nanoparticles on a glass substrate
and reflection of light at the boundary of the glass substrate. In this complex project,
combining theoretical simulations and experiments, our role was in RCWA simulations.
We highlight these here. To remind the reader, the Fano resonances [37] arising from the
interference between a non-radiative mode and a continuum of radiative electromagnetic
waves, the interference produces the asymmetric line-shape.



Numerical analysis of selected advanced problems 26

26

0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength λ [µm]

R
T

E
[0

,0
]

 

 

θ=60°

θ=62°

θ=64°

θ=70°

θ=75°

a) b)

Figure 13 a) Reflection spectra of the random nanodisk array with different incident
angles θ, as calculated with our modified RCWA technique, b) “random” distribution of
nanodisks in a super cell having a dimension of 3 × 3 µm, positions of nanodisks were
taken from an AFM scan.

A model structure consists of an array of random gold nanodisks on glass substrate, so
there is a question how to use RCWA technique, since in principle, the RCWA technique
is able to analyse periodic structures only. Due to this fact, we developed a new original
approach enabling the simulation/treatment for such cases. The actual random positions
of nanodisks in a super-cell were taken from an AFM scan of realized samples (see Fig.
13b).

Figure 14 Angular dependence of the
sensitivity to refractive index changes ob-
tained using the modified RCWA, island
film theory [38], and experiment; the sen-
sitivity of LSP is marked by arrows in the
upper part of the figure, figure is taken
from [36].

We designed a super cell having a dimension
of 3×3 µm, containing 99 gold nanodisks sup-
ported on a glass substrate, and surrounded
by water (nwater = 1.33). Proper dimension
of the artificial period was tested numerically
to ensure the conservation of statistics. To en-
sure accurate results (determined via numeri-
cal tests), we have finally divided the super-
cell into 2044 × 2044 parts (i.e., for a nan-
odisk of 110-nm diameter, typically 70 divi-
sions were considered) and used truncation or-
der Nx = Ny = 23 within the method (i.e.,
(2Nx + 1)2 = 2209 modes included in the cal-
culation), with the Li’s factorization technique
(see Sec. 2.2.1).

Figure 13a) shows reflection spectra of the ran-
dom nanodisk array with different incidence
angles θ. Note that positions of characteris-
tic dips are shifted to longer wavelengths with
increasing angle of incidence.
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Figure 14 shows angular dependence of the sensitivity to refractive index changes of the
surrounding medium ∆nwater = 0.01. As illustrated in Fig. 14, for a smaller/larger angle
of incidence, an increase in the refractive index shifts the resonant feature to shorter/longer
wavelengths. Such an abnormal sensor behaviour is caused by the combination of the
sensitivity of LSP to the refractive index (which is always positive) and the sensitivity
of reflection of light (from glass substrate) to the refractive index which may be both
positive and negative. Moreover, it can be seen from figure 14 that RCWA simulation
agrees best with the experimental results. Also, we have implemented an approximate
technique based on the effective medium approach, namely island film theory [38] with
reasonable agreement, too.

4.2 Magneto-optic waveguides

The second example deals with the application of the magneto-optic (MO) aperiodic
rigorous coupled wave analysis (MOaRCWA) method to magneto-optic waveguides sim-
ulations. Among surface waves constrained and propagating along media interfaces of
various photonic or plasmonic nanostructures, recently, magnetoplasma surface waves; or
magnetoplasmons (MSP); generated with an external magnetic field (mainly in the trans-
verse, or Voigt configuration), have found an increasing scientific interest in many areas
ranging from sensors, nonreciprocal guiding systems, to metamaterials, due to their novel
properties [39]. In order to properly analyse such MSP phenomena, appropriate simula-
tion tools are necessary. For that purpose, we have developed an efficient 2D numerical
technique based on the MOaRCWA method, the description of the method is given in
Ch. 3.

Based on previous investigation of one-way waveguides consisting of metal / MO pho-
tonic crystal interface [40], we have focused on the structures containing interface InSb
/ dielectric interface [41]. Our work has been partially motivated by recent investigation
of Au / dielectric / InSb sandwiched guiding structures [42]. This completed research is
ready for the submission to an impacted journal.

4.2.1 InSb magneto-optic medium

x
y z

B

Figure 15 Transver-
sal (Voigt) magneto-
optic configuration.

If the magnetic field or the magnetization of a medium are
aligned perpendicularly to the sample plane XY (see Fig. 15),
this configuration is called transversal (Voigt) magneto-optic
configuration (another configurations are briefly discussed in
Sec. 3.2). According to the MO Drude dispersion model [42],
with the damping taken into account, the frequency depen-
dence of the relevant permittivity tensor is given as

ε = ε∞





εxx iεxy 0
−iεxy εxx 0

0 0 εzz



 , (43)

where

εxx = 1−
ω2

p(ω + iγ)

ω [(ω + iγ)2 − ω2
c ]

, εxy =
ω2

pωc

ω [(ω + iγ)2 − ω2
c ]

, εzz = 1−
ω2

p

ω(ω + iγ)2
, (44)
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where, ε∞ is high-frequency limit permittivity, ωp is the plasma frequency, γ is the collision
frequency of carriers, ωc = eB/m∗ is the cyclotron frequency, e and m∗ are the charge
and the effective mass of electrons, respectively. Typically, the strength of the magnetic
field B reaches a few Tesla.

The following parameters of InSb material as the input into the model at room tem-
perature and magnetic field B = 1 T were chosen: ε∞ = 15.68, ωp = 12.6 THz, γ =
(0.1π) THz, and ωc = 12.56 THz.

4.2.2 One-way plasmonic waveguides operating at the THz range

For photonics to become a realistic alternative to electronics compact integrated optical
analog of one-way electronic devices such as diodes and transistors, are needed. Most
of the photonic nonreciprocal devices and one-way devices are based on either nonlinear
optics or magneto-optical (MO) effects. Using MO effects, unidirectional propagation
can appear from a strong electromagnetic spectral asymmetry in the presence of a strong
external magnetic field based on the simultaneous breaking of space and time-reversal
symmetry [43]. Equally, unidirectional propagation may also occur due to the geom-
etry of the structure [40]. Many conventional metal surfaces support localized surface
plasmon polariton modes that can be excited using prism-coupling methods which, nev-
ertheless cannot be applied in THz frequency range. Surface plasmon polaritons in the
THz range are technologically important because they provide a possibility to develop sub-
wavelength-scale device and offer the only possibility to investigate nanoscale systems in
THz frequencies.

In this subsection, we focus on a magnetoplasmons performance of planar waveguides,
based on highly-dispersive polaritonic InSb material, in the presence of external mag-
netic field, affecting the structure via the Voigt MO effect and thus imposing desired
nonreciprocity (one-way propagation).

A schematic picture of the MO guiding structures of our interest and investigation is
shown in Fig. 16. In fact, we have considered three configurations of InSb waveguides,
namely: (1) a flat simple InSb / dielectric (air) planar boundary (see Fig. 16a)), (2)
a planar InSb / air / metal (gold) planar waveguide (see Fig. 16b)), and finally a new
original structure proposed, (3) a symmetric InSb / (dielectric) air / InSb planar guide
(see Fig. 16c)). The purpose of an introduction of the third structure with opposite
magnetizations is to increase one-way propagation region with lower or same value of the
magnetic field.

Three types of guides guide consist of magnetized InSb substrate, separated from air,
or gold, or InSb cover with an air guide (with the relative permittivity of air equal 1).
Here, the width w and the typical length of the waveguide are w = 15.68 µm and 300 µm,
respectively. It should be noted that, within the THz frequency range, gold resembles a
perfect conductor.

4.2.3 Comparison of three one-way plasmonic waveguides based on InSb

First of all, we have calculated dispersion diagrams with nonreciprocity behaviour with
respect to the propagation direction for the corresponding waveguide for the magnetic
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Figure 16 Schematic picture of thee one way nonreciprocal
waveguides: a) simple InSb/air boundary, b) InSb/air/gold wave-
guide, c) InSb(+)/air/InSb(−) waveguide; (+) or (−) symbols
define direction of the magnetic field.

fields B = 0 T and B = 1 T, respectively. The results are shown in Fig. 17 where
backward and forward modes create one-way propagation region. As it turned out, the
one-way bandwidth of the symmetric InSb / air / InSb planar waveguide is the largest
(due to opposite magnetization). In case of diagrams 17a) and 17b), we have obtained
nearly perfect agreement between the MOaRCWA results and the dispersion equation
[44] (however, dispersion equation [44] cannot be used to calculate the symmetric InSb /
air / InSb planar waveguide). Notice that a backward propagating mode exhibits sudden
frequency cut-off.
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Figure 17 Dispersion diagrams for the one-way MO InSb waveguide structures of
interest, for the magnetic fields applied (B = 0 T, B = 1 T, respectively): a) InSb
/ dielectric (air) planar boundary, b) InSb / air / metal (gold) planar waveguide, c)
symmetric InSb / air / InSb planar waveguide.

Next, relative spectral transmittances T of the forward and backward propagating waves
are plotted in Fig. 18, these simulations have been done with our MOaRCWA method.
This nonreciprocal transmittance within the whole band gap clearly evidence potential
application possibilities. Notice that the noreciprocal effect is a weak in case of simple
planar boundary with the waveguide length 300 µm. Therefore, to allow the effect to
increase, we have also considered the guide length of 3000 µm. As can be seen, the
symmetric InSb / air / InSb planar waveguide (see in Fig. 18c)) exhibits the largest
one-way propagation region.

In this section, we have analysed three configurations of nonreciprocal magnetoplasmonic
waveguides formed with InSb material, applicable as one-way structures in the THz range.
The analysis is based on combination of (quasi)analytical dispersion relation predictions
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Figure 18 Relative spectral transmittance T of the forward and backward propagating
waves for the one-way MO InSb waveguide structures of interest: a) InSb / dielectric
(air) planar boundary (two lengths of the boundary are considered: 300 µm and 3000
µm), b) InSb / air / metal (gold) planar waveguide, c) symmetric InSb / air / InSb
planar waveguide.

and our magneto-optic Fourier modal method (MOaRCWA) simulations. Currently, the
results of this research, in a broader context, are ready for publication.

4.3 High-Q photonic crystal nanocavities

This section summarizes the main results of an another example — the simulation of a
hybrid cavity structure which was proposed within the European Action COST MP0702
as a modelling exercise [45] for a thorough comparison of the numerical techniques. The
hybrid character stems from the use of different materials for cavity and waveguide. The
full results of the study are published in [46]. The hybrid cavity structure, which is shown
in Fig. 19, consists of a size-modulated 1D stack cavity coupled with the Si nanowire
waveguide. It has been shown that such stack cavities (a simple periodic array of dielectric
blocks) can reach ultrahigh quality factors (Q-factor) provided widths of the blocks (i.e.
here the widths of InP sections in x direction) are properly modulated near the cavity
center [47].

Structure definition
Schematic cross-section views of the structure are shown in Fig. 19. The structure consists
of a cavity, coupled to an (input or output) waveguide.

The modulated cavity vein widths are

w(i) = wcav

[

1 +
(i− 1)2

3N2
cav

]

,

with wcav = 0.15 µm and i = 1, . . . , Ncav. Modulated cavity vein widths w(i) are rounded
to three decimal places. The following parameters remain fixed throughout all geometry:
InPy = 0.7 µm, InPz = 0.35 µm, period = 0.35 µm, Siz = 0.22 µm. Some of the ladder
properties are also fixed. The unmodulated “mirror” veins on each side have width (in
the x-direction) wmir = 0.2 µm. After some optimizations, we used 10 mirror veins
(Nmir = 10) on each side. We assume a silicon waveguide (Si, n = 3.46), resting on a
(semi-infinite) silicon oxide layer (SiO2, n = 1.45). The cavity is formed by sections of
indium phosphide (InP, n = 3.17). On top of the oxide substrate and all around the
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Figure 19 The PhC cavity device coupled to a waveguide. The cavity is formed by
the InP sections, the waveguide functions as input/output coupler. The 3D view only
shows the Si and InP sections. The structural parameters are described in the text.

cavity we considered a homogeneous material, in our case we taken the bonding material
BCB (benzocyclobutene, n = 1.54).

The mechanism of confinement is explained as follows [47, 46]. In the center of the InP
structure a Bloch mode is guided. However, when this mode propagates from the center to
the side, the veins become thicker. This increase of high-index material generally means
that the dispersion of the mode lowers in frequency. Eventually, at the operating frequency
of the cavity, this mode becomes cut-off in the mirror sections on the side. The mode,
which was propagating in the center, thus encounters a band-gap, energy can be reflected,
or scattered into radiation. However, because the vein thickness change is gradual, the
adjustment of the Bloch mode is very slow, leading to a substantially high probability that
the forward-propagating Bloch mode is reflected into the backward-propagating mode.
The latter leads to very high reflections, and, when this process happens on both sides
of the center, to high-quality cavity modes. More gradual cavities will generally lead to
higher quality confinement, but the mode volume will increase.

We searched for the fundamental cavity quasi-TE mode (electric field parallel with y)
around wavelength 1.55 µm. Let us note that with such experimental parameters, the
structure is experimentally realizable.

The main objectives of this modelling exercise were as follows:

1. study promising cavity design, determine the quality factor Q and the resonance (nor-
malized) frequency of the fundamental cavity mode for different configurations; more
detailed description of all modelling tasks is given in [45],

2. compare different simulation tools for such 3D cavity problem.



Numerical analysis of selected advanced problems 32

32

Simulation methods:

The method that were being compared are:

• Meep (FDTD) (http://ab-initio.mit.edu/wiki/index.php/Meep), [48] — Bjorn
Maes, (University of Mons, Belgium)

• 3D finite element method (FEM) solver JCMsuite (http://www.jcmwave.com), [49]
— Sven Burger (Zuse Institute Berlin, Germany)

• Bidirectional Eigenmode Propagation (BEP) method, [50] — Jiří Petráček, Jaroslav
Luksch (Brno University of Technology, Czech Republic)

• aRCWA — Pavel Kwiecien, Ivan Richter (CTU in Prague, Czech Republic)

It should be noted that all methods simulate the device in full-vector 3D.

4.3.1 PhC cavity with waveguide

We simulated the photonic crystal cavity with a waveguide, see Fig. 19. Firstly, we
simulated the dependence of the quality factor Q on the number of Ncav, for various
constant values of the lateral Si waveguide width Siy. An example of such simulation is
shown in Fig. 20a) where Siy is equal to 0.5 µm. Secondly, we simulated the dependence
of the quality factor Q on the lateral Si waveguide width Siy, for various constant values
of Ncav. Here we show the result for Ncav = 10 in Fig. 20b). Graphs for different values
of Siy and Ncav = 10 are presented in [46].

As can be seen in Fig. 20, the quality factor Q is almost independent on the width of the
Siy ridge, but there is a minimum around Siy = 0.35 µm owing to phase matching between
the waveguide mode and the (central) Bloch mode in the cavity. The main discrepancies
between the methods show up when strong coupling to the waveguide is involved, as this
involves a delicate phase-mismatch and the need for more stringent boundary conditions.
It is seen that rigorous and accurate calculation of such 3D resonant structure is still
challenging.
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Figure 20 Comparison of four different methods (BEP, FEM, FDTD, and aRCWA),
PhC cavity with a waveguide: a) quality factor Q with respect to number of cavity
sections Ncav (Siy = 0.5 µm), b) quality factor Q with respect to the width of the Siy
ridge (Ncav = 10).
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Methods showed their good applicability. However, results differ significantly on an ab-
solute scale. They indicate that accurate computation of 3D resonators remains a chal-
lenging problem which is further investigated.
.

Conclusions

This doctoral thesis statement summarizes the main selected results which were achieved
during author’s PhD studies. The research work was focused mainly to the topics related
to the numerical simulations and theoretical analysis using periodic/aperiodic rigorous
coupled wave analysis (also called Fourier modal method).

The first chapter comprised brief introduction into the modelling of photonic structures
followed by the short description of the most important numerical methods in photonics
today.

The second chapter was devoted to the theoretical analysis of the 3D aperiodic rigorous
coupled wave analysis method which was successfully developed, tested, and applied [30].
Clearly, this 3D aRCWA method is a natural (but very difficult) generalization of the 2D
case, studied previously. At first, we discussed the proper Fourier factorization technique
for the 3D case including including normal vector method and its generalized modification
based on complex polarization bases. After the short description of the 2D periodic RCWA
method, it was shown that, with only specific modifications via absorbing layers, this
method can be used efficiently for the numerical analysis of aperiodic (i.e. freely standing,
isolated) photonic structures. Next, the effectiveness of the method was improved using
the adaptive spatial resolution technique (the description of our proposed ASR transform
is given in [11]).

In order to properly analyse full-anisotropic photonic / plasmonic structures, especially
magnetooptic (Kerr effect) structures, we have developed an efficient 2D magnetooptic
aperiodic rigorous coupled wave analysis technique. We applied this novel technique to
several interesting cases, most importantly to the perspective MO InSb material.

The fourth chapter of the text was fully focused to showing selected examples of our com-
puter implementation of the RCWA / aRCWA methods for three types of sub-wavelength
photonic structures. Firstly, we presented an overview of our simulation results of optical
sensors based on localized surface plasmon resonance for the detection of chemical and
biochemical species. Secondly, we presented a specific application of the 2D Fourier-based
modal magneto-optic aRCWA method capable of rigorously treating magneto-optical ef-
fects in photonic and plasmonic nanostructures. Thirdly, we presented simulation of a
high-Q one-dimensional photonic crystal nanocavity

We have fulfilled all the dissertation tasks!
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