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Abstract

In this work, we present the measurement of D0 and D∗ meson pro-
duction at mid-rapidity in p+p collisions at

√
s = 200 and 500 GeV. These

mesons are reconstructed directly via their hadronic decay channels with
daughter particles identified by STAR Time Projection Chamber (TPC)
and Time Of Flight (TOF) detectors. These measurements are compared
to theoretical model calculations and physics implications are discussed.

1 Introduction

This work deals with the study of open charm hadron production in p+p col-
lisions at

√
s = 200 and

√
s = 500 GeV. This is the first reconstruction of D0

meson in its hadronic decay channel in p+p collisions at
√
s = 200 GeV. Two

independent data analysis were performed (one by author of this thesis) with
consistent results and results were published in Ref. [1]. Furthermore the first
reconstruction of D0 and D∗± meson in p+p collisions at

√
s = 500 GeV were

done in this thesis. The proton beams were accelerated by Relativistic Heavy
Ion Collider (RHIC) [2], RHIC is located in Brookhaven National Laboratory in
Long Island, state New York, and collided at the experiment Solenoidal Tracker
at RHIC (STAR) [3]. The term open charm denotes hadrons that contain
just one constituent charm quark such as D0(cū), D+(cd̄),Λc(cud) distinguish-
ing them from the J/ψ(cc̄) meson belonging to the group of heavy quarkonia.
Charm quark as well as bottom quark (generally called heavy quark) production
at RHIC energies is dominated by initial gluon fusion and can be described by
perturbative QCD (pQCD) due to their large mass [4]. The measurement of
the charm quark production in p + p collisions provides both pQCD test and
baseline for any measurement in heavy ion collisions.

In relativistic heavy ion collisions at RHIC, heavy quarks are expected to be
created from initial hard scatterings. Since heavy quarks have large masses, long
life time, and negligible annihilation due to their small population, the number
of heavy quarks is conserved during whole medium evolution. The interaction
between heavy quarks and the medium is sensitive to the early medium dy-
namics, therefore heavy quarks are suggested as an ideal probe to quantify the
properties of the strongly interacting QCD matter. Furthermore, the produc-
tion of heavy quarkonia (J/ψ(cc̄),Υ(bb̄)) in heavy ion collisions is affected by
the Debye color screening of the heavy quark potential [5].

The state-of-art measurements of inclusive heavy quark production are car-
ried out through two main approaches:
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1. single leptons from open heavy hadron semi-leptonic decays

2. hadrons from hadronic decays

Figure 1 depicts a created pair of charm quarks hadronizing into D0 and D0

with the probability of 56.5%. The Figure further shows the D0 undergoing
a hadronic decay into negative kaon and positive pion with branching ratio
of 3.87% and D0 undergoing a semi-leptonic decay into a lepton (electron or
muon), corresponding neutrino and positive kaon. The branching ratios as well
as the hadronization probability are taken from Ref. [6]. This work carries the
measurement of the charm quark production through the second approach which
albeit suffers from a large combinatorial background (signal to background ratio
is on the order of 1/1000), however there’s no contribution from other charmed
and bottomed hadron decays and there’s direct access to open charm meson kin-
ematics owing to the possibility of the D0 invariant mass reconstruction. This
allows to calculate the differential invariant cross section of a D meson produc-

tion E
d3σ

D

dp3
=

d2σ
D

2πpTdpTdy
at given transverse momentum pT and rapidity y.

The differential invariant cross section of a cc̄ production E
d3σcc̄
dp3

is then ob-

tained from E
d3σ

D

dp3
through dividing it by the c quark to open charm hadron

probability, albeit the pT and y are the momentum and rapidity of the open
charm hadron respectively.

The charm cross-section can be calculated from an amplitude which is found
by summing up the terms of the Feynman diagrams. They have been evaluated
at the Next-to-Leading Order (NLO) level [7] including diagrams of orders α2

S

and α3
S . The renormalization scale has been chosen near or at the mq. The

E
d3σcc̄
dp3

calculation has been extended to the Fixed-Order Next-to-Leading-

Log level (FONLL) by including terms of orders α2
S (αS log(pT /mq))

k (Leading
Log) and α3

S (αS log(pT /mq))
k (Next-to-leading Log) owing to the rise of large

logarithms of the ratio pT /mq to all orders in the perturbative expansion [8].

The E
d3σ

D

dp3
has been calculated as

E
d3σ

D

dp3
=

d3σcc̄
dp3

⊗D(c→ D) (1)
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Figure 1: Charm quark fragmentation to D0 and two main D0 decay channels.
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where the symbol ⊗ denotes a generic convolution and D(c→ D) fragmentation
function for the fragmentation of the charm quark into a generic admixture of
charm hadrons.

The results of E
d3σ

D

dp3
and

d3σcc̄
dp3

in p+p collisions at
√
s = 200 GeV using

the FONLL approach were presented in [4] and the results of E
d3σ

D

dp3
were con-

firmed by experimental data presented in [1] based also on analysis discussed in

this thesis. The results of E
d3σ

D

dp3
at
√
s = 500 GeV haven’t been published yet

and are referred as ”private communication” [9]. However they were confirmed
by experimental data presented in this thesis.

Let’s also note that calculations of the charm cross section at low pT (< 1
GeV/c) become complicated because charm quarks cannot be treated as a mass-
less flavor. Furthermore, in the low momentum transfer region there is a large
uncertainty in the gluon density function, and the strong coupling constant
increases dramatically. Thus, pQCD calculations have little predictive power
for the total charm cross section in high-energy hadron-hadron collisions [10].
These theoretical issues further demonstrate the necessity of precise experi-
mental measurements to provide constraints that improve theoretical calcula-
tions like the one published in [11].

2 Methodology

The D0(D0) undergoes a decay

D0(D0) B.R.=3.89%−−−−−−−−→ K−π+(K+π−)

with the probability of 3.87% (branching ratio B.R.) and mean free path cτ ∼
123 µm. Hence overwhelming majority of D0 mesons decays inside the RHIC
beam pipe, however pions and kaons live long enough to penetrate through
all STAR experiment subsystems which have the capability to determine mo-
mentum and charge of the pions and kaons (henceforth all other particles) thanks
to the STAR magnet [12] and the Time Projection Chamber (TPC) [3]. Ad-
ditionally, the TPC is able to identify particles through their energy loss per
unit length dE/dx while penetrating through the TPC gas. The keystone in
this analysis was the ability to identify kaons since they are much less abundant
than pions. As shown in Figure 2a, TPC can identify kaons for momentum up
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Figure 2: Particle identification (PID).

to 0.6 GeV/c. With incremental momentum, this ability decreases until com-
pletely vanishes around 1.1 GeV/c and further starts to slowly improve owing
to the relativistic rise being dependent on the particle mass. The Time Of
Flight (TOF) subsystem [14], as demonstrated in Figure 2b, can identify kaons
of momenta up to 1.6 GeV/c and separate them from protons up to 3 GeV/c
overcoming the critical regions where kaon’s dE/dx overlaps pion’s and proton’s
respectively.

The D0 raw yield was calculated as the area of the gaussian function fitted
into the K−π+ +K+π− invariant mass spectrum (MK−π+ +MK+π−) after all
background had been subtracted in the invariant mass region around expected
D0 mass of 1864.84 MeV/c2 [6]. D0 and D0 was analyzed together in order to
enhance observed signals. Such invariant mass spectrum will be called ”Unlike-
sign” spectrum in further text. Let’s note that the candidates whose rapidity
exceeded the (-1,1) interval were rejected. The Unlike-sign spectrum consists of:
pairs from D0, D0 decays, pairs from other decays (like K∗0(892) for example),
and combinatorial background.

The combinatorial background, that constitutes the dominant part of the
D0 candidates invariant mass spectrum, was reconstructed by two independent
techniques:

• Like-Sign Method Pion candidates are paired with the kaon candidates
of the same charge. Then the geometric mean of the two subsets (the
raw yield of positively YK+π+ and negatively YK−π− charged pairs) is
calculated by 2

√
YK−π−YK+π+ .
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• Rotated Momentum Method Each pion candidate is paired with the
kaon candidate with reversed 3-momentum. Track rotation technique is
based on the assumption that by rotating one of the daughter track for
180 degree the decay kinematics is destroyed. Thus the distribution of a
pair invariant mass with one track rotated is able to reproduce the random
combinatorial background.

The Unlike-sign spectrum is shown in Figure 3 for pairs with pT between
1.0 and 2.0 GeV/c. The combinatorial background reconstructed by either
Like-Sign or Rotated Momentum technique was scaled to match the original
Unlike-Sign spectrum of Kπ pairs within the invariant mass interval 1.7 - 1.8
GeV/c2 and it’s shown also in Figure 3, revealing an excellent agreement with
the Unlike-sign spectrum. Such agreement allowed to declare that both methods
describe combinatorial background well and the background could be subtracted
from Unlike-sign spectrum to extract the raw yield of D0 meson. Results of
the background subtractions, let’s call them signal, are shown also in Figure
3 in the same plot like the Unlike-sign and reconstructed backgrounds, it is
zoomed by factor of 2 so that it regards the right scale while the Unlike-sign and
combinatorial background regard the left scale. One can see a strong lorentzian
peak corresponding to particle K0∗(892) (together with its antiparticle), much
smaller and wider peak of K2∗(1430), and and tiny gaussian peak corresponding
to D0 + D0. There’s still some residual background, especially between the
K0∗(892) peak and 0.6 GeV/c2 corresponding to the beginning of the Kπ phase
space, where one can observe a significant peak around 0.7 GeV/c2 which is
φ(1019 MeV/c2) meson whose one of kaons (φ→ K+K−) had been misidentified
for pion. Since the invariant mass of the mother particle depends on invariant
masses of daughter particles the wrong assignment of mass happening at the
particle misidentification causes a shift in the invariant mass of the mother
particle. Hence the artificial exchange the kaon for pion causes shift in the
invariant mass of the φ meson by 355 MeV/c2.

The D∗± meson undergoes a cascading decay

D∗±
B.R.=67.7%−−−−−−−−−→
p∗=39 MeV/c

D0π±S
B.R.=3.89%−−−−−−−−→ K∓π±π±S

with very low decay energy giving both daughter particles momentum in CMS
of 39 MeV/c. Hence the difference in invariant mass

∆M ≡ (MK∓π±π± −MK∓π± ; 1.84 < MK∓π± < 1.89 GeV/c2)
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has very low combinatorial background around 145.4 MeV/c2, which is the
difference in mass of the D∗± and the D0 meson, and whose resolution is de-
termined by mostly the soft pion πS momentum resolution. Both factors imply
the ability to have a significant peak in ∆M spectrum around 145.4 MeV/c2.
In order to suppress background from jets, the cut cos(θ∗) < 0.77 was applied
on the Kπ pair together with the cut on its invariant mass (1.84 < MK∓π± <
1.89 GeV/c2) where θ∗ is the decay angle of the kaon in the Kπ pair CMS
frame. Both cuts are called kinematical cuts.

The combinatorial background in ∆M spectrum was reconstructed by two
independent techniques:

• Wrong-sign Method In the triplet of daughter particles, πS had opposite
sign to π.

• Side-band Method In the triplet of daughter particles, MK∓π± had been
lying between 1.7 and 1.8 or 1.92 and 2.02 GeV/c2, i. e. outside the D0

mass window.

The Wrong-sign background yield is contaminated by some real D∗ signal
whose kaon and pion daughters from D0 decays are both mis-identified. The
fraction of this over counting in the Wrong-sign background is estimated from
fast simulation. The Side-band background yield doesn’t suffer from this con-
tamination so it was reasonable to use Side-band as the default method for
combinatorial background reconstruction and the Wrong-sign (corrected on the
over counting) as a cross check.

Figure 4 depicts ∆M denoted as ”Right Sign” with both Wrong-sign and
Side-band backgrounds and both signal after Wrong-sign and Side-band back-
ground subtraction as well as gaussian fits into these signals in K∓π±π± pT
bins.



9

)2
R

aw
 C

ou
nt

s 
(/0

.4
 M

eV
/c

-20

0

20

40

60

80

100

120

140

160

180
Right Sign (RS)
Wrong Sign (WS)
Side Band (SB)
RS - SB
RS - WS
GausFit(RS - SB)
GausFit(RS - WS)

]2 [GeV/c<1.89}
πK

{1.84<MπK-MππKM
0.14 0.145 0.15 0.155 0.16

-50

0

50

100

150

200 Side Band
 16.92±Raw Yield = 83.87 

/n.d.f. = 3.02/4.002χ
]2 0.06 [MeV/c± = 145.23 μ

]2 0.05 [MeV/c± = 0.26 σ

Wrong Sign
 20.61±Raw Yield = 86.13 

/n.d.f. = 5.94/4.002χ
2 0.07 [MeV/c± = 145.16 μ

]2 0.06 [MeV/c± = 0.24 σ

2.0 < pT(Kππ) < 3.0 GeV/ c

Run 11
pp500

)2
R

aw
 C

ou
nt

s 
(/0

.4
 M

eV
/c

-10

0

10

20

30

40

50

60

70

80 Right Sign (RS)
Wrong Sign (WS)
Side Band (SB)
RS - SB
RS - WS
GausFit(RS - SB)
GausFit(RS - WS

]2 [GeV/c<1.89}
πK

{1.84<MπK-MππKM
0.14 0.145 0.15 0.155 0.16

-20

0

20

40

60

80 Side Band
 16.98±Raw Yield = 82.49 

/n.d.f. = 1.88/4.002χ
]2 0.12 [MeV/c± = 145.63 μ

]2 0.28 [MeV/c± = 0.48 σ

Wrong Sign
 17.64±Raw Yield = 79.24 

/n.d.f. = 2.02/4.002χ
2 0.16 [MeV/c± = 145.70 μ

]2 0.25 [MeV/c± = 0.50 σ

3.0 < pT(Kππ) < 4.2 GeV/c

Run 11
pp500

)2
R

aw
 C

ou
nt

s 
(/0

.4
 M

eV
/c

0

5

10

15

20

Right Sign (RS)
Wrong Sign (WS)
Side Band (SB)
RS - SB
RS - WS
GausFit(RS - SB)
GausFit(RS - WS)

]2 [GeV/c<1.89}
πK

{1.84<MπK-MππKM
0.14 0.145 0.15 0.155 0.16

-10

0

10

20

30

40

50 Side Band
 7.71±Raw Yield = 35.41 

/n.d.f. = 3.98/4.002χ
]2 0.11 [MeV/c± = 145.19 μ

]2 0.07 [MeV/c± = 0.44 σ

Wrong Sign
 8.19±Raw Yield = 37.02 

/n.d.f. = 0.71/4.002χ
2 0.10 [MeV/c± = 145.22 μ

]2 0.08 [MeV/c± = 0.39 σ

4.2 < pT(Kππ) < 5.5 GeV/c

Run 11
pp500

)2
R

aw
 C

ou
nt

s 
(/0

.4
 M

eV
/c

0

2

4

6

8

10 Right Sign (RS)
Wrong Sign (WS)
Side Band (SB)
RS - SB
RS - WS
GausFit(RS - SB)
GausFit(RS - WS)

]2 [GeV/c<1.89}
πK

{1.84<MπK-MππKM
0.14 0.145 0.15 0.155 0.16

-5

0

5

10

15

20 Side Band
 4.61±Raw Yield = 16.77 

/n.d.f. = 1.63/4.002χ
]2 0.12 [MeV/c± = 145.38 μ

]2 0.09 [MeV/c± = 0.39 σ

Wrong Sign
 4.86±Raw Yield = 15.85 

/n.d.f. = 1.87/4.002χ
2 0.12 [MeV/c± = 145.30 μ

]2 0.09 [MeV/c± = 0.35 σ

5.5 < pT(Kππ) < 8.0 GeV/c

Run 11
pp500
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respectively.

Raw yields were corrected on:

• daughter particle track reconstruction efficiency

• daughter particle matching to fast detectors efficiency

• daughter particle identification efficiency

• efficiency of kinematical cuts

• trigger bias

The daughter particle track reconstruction efficiency and the trigger bias were
determined trough simulations, the rest from experimental data. Let’s note
that the correction on the efficiency of kinematical cuts was relevant only in the
analysis of D∗ mesons. Figure 5 shows combined efficiency of both D0 and D∗

reconstruction as a function of D0 (Kπ) and D∗ (KππS) pT respectively. It
doesn’t include the trigger bias.
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Heavy quarks are produced during initial hard scatterings creating high pT
particles penetrating easier into calorimeters which makes a higher probability
of reconstruction of a collision vertex, thus such events are more likely to enter
the analysis. This introduces bias skewed towards events containing charmed
particles. Such bias was calculated as a ratio

β(t) ≡ εVpdεVtx

ξVpd(t)ξVtx(t)
, (2)

where εVpd is the VPD trigger efficiency, εVtx is the efficiency of the collision ver-
tex reconstruction, ξVpd(t) is the VPD trigger efficiency for events containing
D∗ mesons, ξVtx(t) is the vertex reconstruction efficiency for events contain-
ing D∗ mesons, and t the transverse momentum of D∗ meson. The VPD is
Vertex Position Detector [15], coincidental detector consisting of two identical
assemblies mounted, covering 4.24 < |η| < 5.1 and providing the minimum bias
trigger. Figure 6 shows ξVpd(t)ξVtx(t) together with the Trigger bias β(t) calcu-
lated according to (2), where εVpdεVtx was found to be 38.82% Let’s note that
the trigger bias for D0 was found to be consistent with the trigger bias for D∗.
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Figure 7: Systematic discrepancy between the data and the embedding.

The absolute (true) reconstruction efficiency in data was unknown, so it was
calculated from simulation, which is an approximation. The degree of how the
basic track quality distributions (Distance of closest approach to collision vertex
- DCA, Number of charge clusters in TPC - Nhits) from simulation matched
those from the data represented how good was the approximation. And the
difference between them was considered as systematic uncertainty due to this
approximation.

It was difficult to calculate the absolute efficiency of the Hhits or DCA from
the data, so the relative efficiencies ε(rel)

DCA, ε
(rel)
Nhits was used instead:

ε
(rel)
DCA(pT ) ≡

∫ 1

0
h(pT , r)dr∫ 3

0
h(pT , r)dr

, ε
(rel)
Nhits(pT ) ≡

∫ 45

25
h(pT , n)dn∫ 45

15
h(pT , n)dn

, (3)

where h(pT , r) denotes either DCA or Nhits distributions at given pT . System-
atic discrepancy at given pT was then:

δDCA(pT ) ≡
ε

(rel)
DCA(pT ) data

ε
(rel)
DCA(pT ) simulation

, δNhits(pT ) ≡
ε

(rel)
Nhits(pT ) data

ε
(rel)
Nhits(pT ) simulation

(4)

Figure 7 depicts δDCA(pT ) and δNhits(pT ).
The expected value of the systematic uncertainty from embedding ς in given

D0/D∗ transverse momentum bin (a, b) was calculated as the inner product
of the discrepancy with the daughter particle pT distribution G(a,b)(pT ) in the
(a, b):

ς ≡ E(a,b)(|1− δ(pT )|) =
∫ 8

0

|1− δ(pT )|G(a,b)(pT )dpT , (5)
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(a, b) ςNhits [%] ςDCA [%]
ςtot [%][GeV/c] K π πS Sum K π πS Sum

(1.0,2.0) 2.36 0.95 3.32 1.06 3.07 4.13 5.30
(2.0,3.0) 2.14 0.94 3.34 6.42 0.88 2.51 9.16 12.55 14.10
(3.0,4.2) 1.65 0.80 2.00 4.44 0.90 2.08 8.75 11.73 12.54
(4.2,5.5) 1.27 0.70 1.21 3.17 1.13 2.01 8.25 11.39 11.83
(5.5,8.0) 1.01 0.65 1.01 2.67 1.62 2.27 7.22 11.10 11.42

Table 1: Systematic errors from discrepancy between embedded and experi-
mental data. First column presents D0/D∗ transverse momentum bins (a, b)
and the last column corresponding systemtic uncertainty obtained from values
shown in middle columns by (6).

Results are summarized in Table 1. With the assumption of an ideal correlation
among daughter particles’s systematic uncertainties, the systematic error on the
efficiency determination (and in this analysis also total systematic uncertainty)
could have been directly calculated as

ςtot =

√√√√(#daughters∑
i=1

ςiNhits

)2

+

(
#daughters∑

i=1

ςiDCA

)2

(6)

and is listed in the last column in Table 1.

The contribution from matching efficiency uncertainty was found to be neg-
ligible (bellow 3% of ςtot). Let’s compare the total uncertainty on the efficiency
determination, values in the last column of Table 1, with statistical errors of
yields in corresponding D0/D∗ transverse momentum bins (a, b), 17.5% for D0

(1,2) GeV/c and 21.6%, 20.6%, 21.8%, and 27.5% for D∗ (2, 3), (3, 4.2), (4.2,
5.5), and (5.5, 8) GeV/c respectively. In all pT bins the statistical uncertainty is
higher that the total systematic uncertainty from which one can conclude that
the whole analysis procedure was good enough for given amount of data. To
improve the overall precision of this analysis one can just triple the amount of
experimental data to reduce statistical errors to match systematic uncertainties
without any change of the analysis procedure.
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3 Results

The reconstruction of D0 in p+p collisions at
√
s = 200 GeV (Run9 pp200

analysis) and reconstruction of D0 and D∗± in p+p collisions at
√
s = 500 GeV

(Run11 pp500 analysis) at STAR via the hadronic decay channels

D∗±
B.R.=67.7%−−−−−−−−−→
p∗=39 MeV/c

D0π±
B.R.=3.89%−−−−−−−−→ K∓π±π±

D0 B.R.=3.89%−−−−−−−−→ K∓π±,

where B.R. are branching ratios of these open charm mesons to pions and kaons
[6], were done. 51.8 million and 107.8 minimum bias events have been analyzed
in Run11 pp500 and Run9 pp200 analysis respectively.

This section presents final results of the both pT -differential and pT -integrated
invariant cross section of charm-anticharm quark pair production at mid-rapidity
measurements and total charm-anticharm quark pair cross section estimation
using PYTHIA [16] simulation. Let’s note that the pT is transverse momentum
of the open charm meson. These results are compared to theoretical model
calculations and physics implications are discussed.

The differential invariant cross section E
d3σ

dp3
of an charm quark pair cc̄

production at mid-rapidity was calculated according to equation

E
d3σ

dp3

∣∣∣∣
y=0

=
d2σ

2πpTdpTdy

∣∣∣∣
y=0

=
1
2

1
2π

σNSDβ

N fcΓ
Y

pT∆pT∆y
1
ε
, (7)

where σNSD is inelastic non-singly diffractive p+p cross section, β is the trigger
bias, N is the total number of events entered the analysis, fc represents the ratio
of a charm quark hadronizing to an open charm meson, Γ denotes the branching
ratio of a decay, and Y is the raw yield in a pT bin of the width ∆pT within
the rapidity window ∆y. ε is the combined reconstruction efficiency of the D0

or D∗ reconstruction shown in Figure 5. Results from Run9 pp500 analysis are
summarized in Table 2 and results from Run11 pp500 analysis are summarized
in Table 3. Both tables show values of all variables used in equation (7). Some
variables don’t depend on reconstructed D0/D∗ pT so they are displayed in
cells stretched over more columns. Rows between thick horizontal rules show
variables and values which are then corrected on bin widths (the bin width
correction is discussed further in the text) and plotted in Figures 11, 8, 9, and
10.
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σNSD [mb] 30 ± 3.5
N 107.8M

fc [%] 56.5 ± 3.2
Γ [%] 3.89

β 0.67

pT [GeV/c] 0.8 1.15

∆pT [GeV/c] 0.4 1.3

∆y 2

Y 1708±497 1860±635

ε [%] 0.0695 0.0746

E
d3σ

dp3

∣∣∣∣
y=0

[nb] 25660± 7646 3886± 1328

ςtot [%] 6.3 9.8

Table 2: Final results from Run9 pp200 analysis. Table shows values of all
variables in equation (7). Some variables don’t depend on reconstructed D0 pT
so they are displayed in cells stretched over more columns. Let’s note those
results are not corrected on bin widths.
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σNSD [mb] 34 ± 4

N 51 771 500

fc [%] 56.5 ± 3.2 22.4 ± 2.8

Γ [%] 3.89 2.63

β 0.696 0.652 0.630 0.629 0.636

pT [GeV/c] 1.5 2.5 3.6 4.85 6.75

∆pT [GeV/c] 1.0 1.0 1.2 1.3 2.5

∆y 2

Y 4064± 1006 83.9± 18.1 82.5± 17.0 35.4± 7.7 16.8± 4.6

εtot [%] 26.2 5.08 17.3 27.5 32.7

E
d3σ

dp3

˛̨̨̨
˛
y=0

[nb] 8508± 2106 1927± 389 312.1± 64.25 57.5± 12.52 8.674± 2.377

ς [%] 5.3 14.1 12.54 11.83 11.42

Table 3: Final results from Run11 pp500 analysis. Table shows values of all vari-
ables in equation (7). Some variables don’t depend on reconstructed D0/D∗ pT
so they are displayed in cells stretched over more columns. Let’s note those
results are not corrected on bin widths.

Values of fc and Γ were taken from Ref. [6]. σNSD was measured for p+p
collisions at

√
s = 200 GeV at STAR [17]. There is no such measurement at√

s = 500 GeV, hence the measured value from p+p collisions at
√
s = 200 GeV

was scaled by Pythia with assumption that the systematic error at
√
s = 500

GeV differs negligibly from the one at
√
s = 200 GeV.

Let’s note that the pT values shown in both Tables 3 and 2 were chosen
arbitrarily as bin centers because the real values hadn’t been known. To know

correct pT values, one must know the exact shape of the E
d3σ

dp3

∣∣∣∣
y=0

and that

had also been unknown. This problem can be solved iteratively. Let’s define
the new transverse momentum

p
(i+1)
T = F (i)−1

(∫ b

a

F (i)(pT )dpT

)
, (8)

where F (i) ≡ pT f(pT ) with parameters obtained from the f(pT ) fit into
d2σ(i)

2πp(i)
T dpTdy

∣∣∣∣∣
y=0

calculated according to (7). f(pT ) is the power law function

either of Hagedorn’s or Lévy’s shape (those power law functions are discussed
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Hagedorn’s shape Lévy’s shape (m0 = 1.5) Lévy’s shape (m0 = 1.27)

p
(6)
T E

d3σ(6)

dp3

˛̨̨̨
˛
y=0

[mb] p
(6)
T E

d3σ(6)

dp3

˛̨̨̨
˛
y=0

[mb] p
(6)
T E

d3σ(6)

dp3

˛̨̨̨
˛
y=0

[mb]

1.46 (8.75± 1.53) · 10−3 1.49 (8.57± 1.50) · 10−3 1.49 (8.60± 1.50) · 10−3

2.45 (19.7± 3.97) · 10−4 2.45 (19.7± 3.97) · 10−4 2.45 (19.7± 3.97) · 10−4

3.53 (31.8± 6.55) · 10−5 3.52 (31.9± 6.56) · 10−5 3.53 (31.9± 6.56) · 10−5

4.77 (5.84± 1.27) · 10−5 4.77 (5.85± 1.27) · 10−5 4.77 (5.85± 1.27) · 10−5

6.50 (8.98± 2.47) · 10−6 6.51 (8.97± 2.47) · 10−6 6.51 (8.97± 2.47) · 10−6

Table 4: The results after bin width correction having used three differential
cross section parametrization: 1) Hagedorn parametrization where f(pT ) = (10);
2) Lévy parametrization where f(pT ) = (12) with m0 = 1.5 GeV/c2; 3) Lévy
parametrization where f(pT ) = (12) with m0 = 1.27 GeV/c2. p(6)

T is in units
GeV/c.

in next paragraphs).
d2σ(0)

2πp(0)
T dpTdy

∣∣∣∣∣
y=0

and p
(0)
T were set to have values from

Table 3. After the third iteration the results became very stable. Table 4
exposes results from Run11 pp500 analysis after 6th iteration. The values of
the differential invariant cross section after the iterations are model dependent.
That’s why Table 3 have three main columns dedicated to usage of Hagedorn’s
and Lévy’s shapes. Those main columns have each two sub-columns with the
pT value after the 6th iteration and with the differential invariant cross section
after the 6th iteration. Those data are plotted in Figures 8, 9, 10 together with
corresponding f(pT ).

Hard scattering amplitudes follow a power-law function giving us assump-
tion of open charm invariant cross section power-law behavior. Long time ago
Hagedorn proposed the QCD inspired empirical formula describing the data of
the invariant cross section of hadrons as a function of pT over a wide range [18]:

d2σ

pTdpTdy
= A

(
1 +

pT
p0

)−n
−→


exp

(
−npT
p0

)
for pT → 0

(
p0

pT

)n
for pT →∞

(9)
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where A, p0, n are arbitrary constants. This function has indeed become a purely
exponential function for small pT and a purely power law function for large pT 1.
The mean pT becomes:

〈pT 〉 =
A
∫∞
−∞

dσ
dy dy

∫∞
0
p2
T

(
1 +

pT
p0

)−n
A
∫∞
−∞

dσ
dy dy

∫∞
0
pT

(
1 +

pT
p0

)−n =
2p0

n− 3

The normalization constant A can be obtained from the relation:

dσ/dy = A

∫ ∞
0

pT

(
1 +

2pT
p0

)−n
=

Ap2
0

(n− 1)(n− 2)
thus

A = 4
dσ
dy

(n− 1)(n− 2)
〈pT 〉2(n− 3)2

, p0 =
〈pT 〉

2
(n− 3)

and cc̄ invariant cross section can be represented by

d2σcc̄

2πpTdpTdy
=

2
π

dσcc̄

dy
(n− 1)(n− 2)
〈pT 〉2(n− 3)2

(
1 +

2pT
〈pT 〉(n− 3)

)−n
(10)

with three free parameters dσcc̄/dy, 〈pT 〉, n need to be obtained from the least
square fit of the real corrected data points.

As an alternative to Hagedorn (9) formula, one can use a different approach
based on the Tsallis statistics [19] to fit particle spectra. The Tsallis distribution
was derived from a generalized form of the Boltzmann-Gibbs entropy. However,
there are other origins discussed in recent days [20] suggesting for example hard
collisions approach [21]. The distribution could be written in the form:

d2σ

2πpTdpTdy
= Cn

(
1 +

√
p2
T +m2

0

nT

)−n
(11)

1It is widely known from experimental data that, as expected from pQCD calculations [22],
a pure power law shape successfully describes the high pT region of particle spectra. At low
pT , suggests a thermal interpretation in which the bulk of the produced particles are emitted
by a system in thermal equilibrium with a Boltzmann-Gibbs statistical description of their
spectra:

E
d3σ

dp3
= Ae−E/T

where A is a normalization factor and E is the particle energy. At mid-rapidity one can replace

E by mT =
q
p2T +m2

0, where m0 is the particle rest mass.
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Hagedorn parametrization

dσ

dy

˛̨̨̨
y=0

= 272± 77(stat)± 31(sys) µb 〈pT 〉 = 1.14± 0.16 GeV/c n = 13.7± 7.3

Lévy parametrization with m0 = 1.5 GeV/c2

dσ

dy

˛̨̨̨
y=0

= 211± 43(stat)± 15(sys) µb T = 0.19± 0.14 n = 8.7± 3.0

Lévy parametrization with m0 = 1.27 GeV/c2

dσ

dy

˛̨̨̨
y=0

= 216± 45(stat)± 16(sys) µb T = 0.25± 0.14 n = 9.5± 3.6

Table 5: The results of fits.

where Cn is the normalization constant, n the power and T an inverse slope
parameter.

To calculate Cn, one must integrate (11) over pT

Cn =
1∫∞

0
pT

(
1 +

√
p2
T +m2

0

nT

)−n
dpT

=
1

(nT +m)1−n

(nT )−n
m(n− 1) + nT

(n− 1)(n− 2)

to get the (11) into the form appropriate to fitting:

d2σcc̄

2πpTdpTdy
=

1
2π

dσcc̄

dy
(n− 1)(n− 2)

(nT +m0)[m0(n− 1) + nT ]

(
nT +

√
p2
T +m2

0

nT +m0

)−n
(12)

with three free fitting parameters dσcc̄/dy, n, T .
Results of the f(pT ) fits into already pT bin width corrected data are shown

in Table 5. They show strong dependence of the
dσ
dy

∣∣∣∣
y=0

on the power-law

function parametrization. Only 7% of its value and 5% of its statistical error
was measured. The rest was got by extrapolation of Hagedorn parametrization
of Power-law into zero transverse momentum. Similarly, the extrapolation by

Levy parametrization of Power-law accounted for 90% of the
dσ
dy

∣∣∣∣
y=0

value and

92% of the statistical error. The final result to be published is a combination
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Figure 8: Charm quark production cross section as inferred from D0 and D∗ pro-
duction in p+p collisions at

√
s =500 GeV compared with FONLL predictions.

The D0 and D∗ data points were divided by the charm quark fragmentation
ratios fc = 0.565 and fc = 0.224 respectively. FONLL calculations [9] used
µR = µF = mc where µR is the renormalization scale, µF is the factorization
scale and mc is the charm quark mass. ”m = 1.5” in the legend denotes mc = 1.5
GeV/c2 and ”m = 1.27” denotes mc = 1.27 GeV/c2. Data points are already
corrected on bin widths and fitted by Hagedorn Power-law function (10).
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Figure 9: Charm quark production cross section as inferred from D0 and D∗

production in p+p collisions at
√
s =500 GeV compared with FONLL predic-

tion. The D0 and D∗ data points were divided by the charm quark fragment-
ation ratios fc = 0.565 and fc = 0.224 respectively. FONLL prediction [9] used
µR = µF = mc = 1.5 GeV/c2 where µR is the renormalization scale, µF is the
factorization scale and mc is the charm quark mass. Data points are already
corrected on bin widths and fitted by Lévy Power-law function (12) with m0

chosen to be 1.5 GeV/c2.
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Figure 10: Charm quark production cross section as inferred from D0 and D∗

production in p+p collisions at
√
s =500 GeV compared with FONLL predic-

tion. The D0 and D∗ data points were divided by the charm quark fragment-
ation ratios fc = 0.565 and fc = 0.224 respectively. FONLL prediction [9] used
µR = µF = mc = 1.27 GeV/c2 where µR is the renormalization scale, µF is the
factorization scale and mc is the charm quark mass. Data points are already
corrected on bin widths and fitted by Lévy Power-law function (12) with m0

chosen to be 1.27 GeV/c2.



23

of the result obtained with the help of Hagedorn parametrization (bin with
correction and extrapolation to zero pT ) and Lévy parametrization with m0 =
1.5 GeV/c2. Lévy parametrization with m0 = 1.27 GeV/c2 gives very similar
result to the one with m0 = 1.5 GeV/c2, so the Lévy does not have to be
counted twice. Both Lévy and Hagedorn parametrization were fitted into the
same data points, which implicates that 8% of 43 µb (statistical error from Lévy
extrapolation) and 5% of 77 µb (statistical error from Hagedorn extrapolation)
are correlated with correlation coefficient to be 1. The rest of statistical errors
are totally independent with correlation coefficient to be 0. Based on article
[24], it was found that the correlated part of the statistical error was too small
to have any significant impact. The final result was thus calculated as weighted

average of
dσ
dy

∣∣∣∣
y=0

determined using the Hagedorn parametrization and
dσ
dy

∣∣∣∣
y=0

determined using the Lévy parametrization with m0=1.5 GeV/c2 since both are
independent. Lévy parametrization with m0=1.27 GeV/c2 is correlated with
the m0=1.5 GeV/c2 one. Thus the m0=1.5 GeV/c2 one was picked arbitrarily,
because it matches the measured points better. The extrapolated bin-by-bin
systematic errors were treated the same way as values. All of this above gives
the final result:

dσ
dy

∣∣∣∣
y=0

= 225± 38(stat)± 19(sys)± 26(norm) µb (13)

where the term ”norm” denotes error non-singly-diffractive cross section. The
errors of fc have not been propagated into the final result yet. The Run11 pp500
analysis results are still presented as preliminary.

The charm cross section at mid rapidity was extrapolated to full rapidity
using two different sets of PYTHIA simulation parameters. The extrapolation
factor was found to be 5.6± 0.1 giving the total charm production cross section
value:

σppcc = 1260± 211(stat)± 109(sys)± 146(norm) µb (14)

This result is displayed with results from other experiments in Figure 12, re-
vealing very good agreement with NLO prediction [23].

In the Run9 pp200 analysis, only Hagedorn’s shape power law function was

used to fit to the data points. The E
d3σ

dp3

∣∣∣∣
y=0

from Run9 pp200 analysis is

shown in Figure 11. The black triangles together with black circles represent
results published in [1] and green triangles results of author’s D0 production
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cross check analysis. The published cc̄ production cross section at mid-rapidity
is

dσ
dy

∣∣∣∣
y=0

= 170± 45(stat)+38
−59(sys) µb (15)

The charm cross section at mid-rapidity (15) was extrapolated to full phase
space using the same extrapolation factor, 4.7±0.7, as in [?], and the extracted
charm total cross section at

√
s = 200 GeV is

σppcc̄ = 797± 210(stat)+208
−295(sys) µb (16)

The value (16) is also displayed in Figure 12.
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Figure 11: Charm quark production cross section as inferred from D0 and D∗

production in p+p collisions at
√
s =200 GeV compared with FONLL calcula-

tion [8]. The D0 and D∗ data points were divided by the charm quark frag-
mentation ratios fc = 0.565 and fc = 0.224 respectively. D0 data points from
this analysis are shown as green triangles, compared with results from [1] having
the tag ”(Published)” in the legend. Data points are already corrected on bin
widths and fitted by Hagedorn Power-law function (10).
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4 Summary

In summary, the first measurement of the charm pair production cross section
in p+p collisions at RHIC at

√
s = 500 GeV and 200 GeV has been reported.

The cross section was calculated from the production of open charmed-meson
D0 and D∗ reconstructed via their hadronic decays, covering the pT range from
1 to 8 GeV/c. The measured transverse momentum differential cross section
is consistent with the prediction of a Fixed-Order Next-to-Leading Logarithm
perturbative QCD calculation. The charm pair production cross section at mid-
rapidity is measured to be

dσ
dy

∣∣∣∣
y=0

= 225± 38(stat)± 19(sys)± 26(norm) µb

in p+p collisions at
√
s = 500 GeV and

dσ
dy

∣∣∣∣
y=0

= 170± 45(stat)+38
−59(sys) µb

in p+p collisions at
√
s = 200 GeV. The total charm pair cross section is estim-

ated as
σppcc = 1260± 211(stat)± 109(sys)± 146(norm) µb

in p+p collisions at
√
s = 500 GeV and

σppcc̄ = 797± 210(stat)+208
−295(sys) µb

in p+p collisions at
√
s = 200 GeV. Results measured at both energies are

consistent with Next-To-Leading order perturbative QCD calculation.
The results of D0/D∗ production analysis in p+p collisions at

√
s = 200

GeV have been already used as the baseline for the D0 suppression in Au+Au
collisions at

√
sNN = 200 GeV measurement published in Ref. [25]. The sup-

pression in the most central Au+Au collisions was compared to various models
and it was found that the calculations including a substantial amount of charm-
medium interaction and hadronization via both fragmentation and coalescence
describe the measured D0 meson nuclear modification factor RAA well.

STAR has been recently upgraded with two new detectors, the Heavy Fla-
vor Tracker (HFT) [26] and Muon Telescope Detector (MTD) [27]. The HFT
is based on cutting edge silicon detector technologies with excellent position
resolutions and low material budgets. It provides STAR with the capability
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of identifying heavy-flavor particles and distinguishing between charm and bot-
tom on an event-by-event basis through track impact parameter measurements
[28]. The MTD enables STAR to identify high pT muons for the first time,
which is important for quarkonium measurements in di-muon decay channels
and for open heavy-flavor measurements through e. g. electron-muon correl-
ations. With the additions of the HFT and MTD, STAR is in an excellent
position for heavy-flavor measurements with unprecedented precisions in the
coming years.
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